ATD: Collaborative Research: Point Process Algorithms for Threat Detection from Heterogeneous Human Mobility and Activity Data

ATD:协作研究:用于从异构人体移动性和活动数据进行威胁检测的点处理算法

基本信息

  • 批准号:
    1737996
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop new algorithms and models for analyzing human-generated, space-time marked event data in order to quickly identify anomalous patterns that may represent active threats or threats about to occur. The general motivating principle behind the work is that such events, especially when intimately tied to human mobility, generally display robust patterning, such that significant deviations from the typical patterns, either on an individual or collective level, are cause for suspicion and should be treated as potentially dangerous. Thus, this project will better enable authorities to quickly determine when threatening situations arise, so that they can react to them rapidly, mitigating potentially devastating consequences. To achieve this overarching objective, several sub-objectives will be met: 1) constructing models to integrate disparate datasets on human events at varying levels of granularity, from individual-based to neighborhood-based to region-based; 2) developing a framework that ties this integrated data together with models of human mobility; 3) creating methods for detecting sudden changes within the data given the framework, at varying scales, including individuals, groups of individuals, or spatial regions. This project will construct a framework for analyzing human spatio-temporal event data arising from heterogeneous sources, based on the mathematics of stochastic point processes, but specifically tailored to represent events whose underlying structure is intimately tied to human mobility. Several ideas will be united in this framework, such that the resulting algorithms are able to identify anomalous behavior or events that may represent ongoing or emerging threats. First, new methods will be explored for pre-processing high frequency human mobility data -- eg., gps trace data -- to reduce dimensionality and better fit within the marked point process framework. Next, new classes of marked point processes will be developed that are better able to handle the detailed geometric structure often underlying spatial human event data, given the regularity of human motion upon which such events are often layered; high-order Hawkes processes geometrically embedding human mobility motifs are proposed specifically for this task. New methods will be developed for clustering data subject to these point processes at varying levels of abstraction and physical relevance, from individuals, to linked social groups, to neighborhoods, in order to better identify geographic regions or subsets of individuals that may be displaying or reacting to anomalous behavior. To go along with this, new ways will be developed to quickly detect anomalies within the data as compared to the expected point process through goodness of fit measures, again at differing levels of clustering; proposed here is a Bayesian method to detect emerging patterns for even very limited datasets using transfer learning. The end result with be a suite of tools that are all individually useful, and that combined will serve as a powerful new method of organizing and analyzing large datasets of human events to detect threatening behavior.
该项目旨在开发新的算法和模型,用于分析人类生成的时空标记事件数据,以快速识别可能代表活跃威胁或即将发生的威胁的异常模式。这项工作背后的一般动机原则是,这些事件,特别是当与人类流动密切相关时,通常会显示出强大的模式,因此,无论是在个人还是集体层面上,与典型模式的重大偏差都是可疑的原因,应该被视为潜在的危险。因此,该项目将使当局能够更好地迅速确定何时出现威胁局势,以便能够迅速作出反应,减轻潜在的破坏性后果。 为了实现这一总体目标,将实现几个子目标:1)构建模型,以整合不同粒度级别的人类事件的不同数据集,从基于个人到基于社区到基于区域; 2)开发一个框架,将这种整合的数据与人类流动模型联系在一起; 3)创建用于检测给定框架的数据内的突然变化的方法,在不同的尺度上,包括个人、个人群体或空间区域。该项目将构建一个框架,用于分析人类时空事件数据产生的异构源,基于随机点过程的数学,但专门定制,以代表事件的底层结构是密切联系到人类的流动性。几个想法将在这个框架中统一起来,这样产生的算法就能够识别可能代表正在进行或正在出现的威胁的异常行为或事件。首先,将探索用于预处理高频人类移动数据的新方法-例如,全球定位系统跟踪数据-减少维度,更好地适应标记点进程框架。接下来,将开发新的标记点过程类,能够更好地处理详细的几何结构,往往是潜在的空间人类事件数据,考虑到人类运动的规律性,这些事件往往是分层的;高阶霍克斯过程几何嵌入人类移动图案提出专门为这项任务。将开发新的方法,用于在不同的抽象和物理相关性级别上对这些点过程的数据进行聚类,从个人到相关的社会群体,再到社区,以便更好地识别可能显示或对异常行为做出反应的地理区域或个人子集。为了沿着,将开发新的方法来快速检测数据中的异常,与通过拟合优度测量的预期点过程相比,再次在不同的聚类水平;这里提出了一种贝叶斯方法,使用迁移学习来检测即使是非常有限的数据集的新兴模式。最终的结果是一套工具,这些工具都是单独有用的,并且结合起来将作为一种强大的新方法来组织和分析人类事件的大型数据集,以检测威胁行为。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reducing Bias in Estimates for the Law of Crime Concentration
  • DOI:
    10.1007/s10940-019-09404-1
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Mohler, George;Brantingham, P. Jeffrey;Short, Martin B.
  • 通讯作者:
    Short, Martin B.
Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis
  • DOI:
    10.1016/j.jcrimjus.2020.101692
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Mohler, George;Bertozzi, Andrea L.;Brantingham, P. Jeffrey
  • 通讯作者:
    Brantingham, P. Jeffrey
Repurposing recidivism models for forecasting police officer use of force
重新利用累犯模型来预测警察使用武力
Group Link Prediction
A modified two-process Knox test for investigating the relationship between law enforcement opioid seizures and overdoses
改进的两过程诺克斯测试,用于调查执法阿片类药物缉获和过量之间的关系
  • DOI:
    10.1098/rspa.2021.0195
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohler, G.;Mishra, S.;Ray, B.;Magee, L.;Huynh, P.;Canada, M.;O’Donnell, D.;Flaxman, S.
  • 通讯作者:
    Flaxman, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Mohler其他文献

The limits of digital liberation: The social locations of gang-affiliated girls and women in the digital streets
数字解放的局限:帮派相关女孩和女性在数字街头的社会位置
  • DOI:
    10.1016/j.jcrimjus.2024.102344
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    John Leverso;Kate K. O'Neill;Alex Knorre;George Mohler
  • 通讯作者:
    George Mohler
Measuring Online–Offline Spillover of Gang Violence Using Bivariate Hawkes Processes
  • DOI:
    10.1007/s10940-024-09592-5
  • 发表时间:
    2024-10-25
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    John Leverso;Youness Diouane;George Mohler
  • 通讯作者:
    George Mohler

George Mohler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Mohler', 18)}}的其他基金

ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
  • 批准号:
    2317397
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
  • 批准号:
    2124313
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SCC-IRG Track 2: Real-Time Algorithms and Software Systems for Heterogeneous Data Driven Policing of Social Harm
SCC-IRG 第 2 轨:用于异构数据驱动的社会危害警务的实时算法和软件系统
  • 批准号:
    1737585
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
REU Site: Data Science of Risk and Human Activity
REU 网站:风险和人类活动的数据科学
  • 批准号:
    1659488
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了