BIGDATA: IA: Distributed Semi-Supervised Training of Deep Models and Its Applications in Video Understanding
BIGDATA:IA:深度模型的分布式半监督训练及其在视频理解中的应用
基本信息
- 批准号:1741431
- 负责人:
- 金额:$ 66.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates semi-supervised training of deep neural network models using large-scale labeled and unlabeled data in a distributed fashion. Deep neural networks have recently been widely deployed in artificial intelligence and related scientific fields, largely attributing to well-labeled big datasets and improved computing capabilities. However, the unlabeled data, which is often bigger, is inherently ruled out by the prevailing supervised training of the deep models. It is indeed highly challenging to model the unlabeled parts of many recent and emerging datasets, which are often unstructured and distributed over different nodes of a network (e.g., the videos captured by a camera network). This project aims to explore how to effectively use the unlabeled and distributed data to complement the discriminative cues of the labeled data, to jointly learn accurate and robust deep models. The research seamlessly unifies machine learning, computer vision, and parallel computing, and fosters unique interdisciplinary research and education programs for the graduate and undergraduate students.Despite the progress on semi-supervised learning and deep learning, the confluence of these two is mostly studied on a small scale in single-machine environment. However, many new datasets easily grow beyond the computation or even storage capacity of a single machine. Hence, it becomes a pressing need to investigate the semi-supervised learning of deep models on parallel computing platforms. To better account for this scenario, this project develops improved network architectures to facilitate the parallel training, and the training procedure developed adaptively switches between synchronized and asynchronized modes for optimal efficiency. The main idea is to incorporate a parametric distribution to the neural network and use covariate matching to coordinate the network behaviors across different machines. The researchers also explore a novel application, extreme-scale spatial-temporal action annotation of video sequences, to benchmark the algorithms and frameworks in this project.
该项目以分布式方式研究使用大规模标记和未标记数据的深度神经网络模型的半监督训练。近年来,深度神经网络在人工智能和相关科学领域得到了广泛应用,这主要归功于标记良好的大数据集和改进的计算能力。然而,未标记的数据通常更大,本质上被主流的深度模型监督训练排除在外。对许多最新和新兴数据集的未标记部分进行建模确实非常具有挑战性,这些数据集通常是非结构化的,分布在网络的不同节点上(例如,由摄像机网络捕获的视频)。本项目旨在探索如何有效地利用未标记和分布式数据来补充标记数据的判别线索,共同学习准确和鲁棒的深度模型。该研究将机器学习、计算机视觉和并行计算无缝地结合起来,为研究生和本科生培养了独特的跨学科研究和教育项目。尽管在半监督学习和深度学习方面取得了进展,但这两者的融合研究大多是在单机环境下的小规模研究。然而,许多新数据集的增长很容易超出单个机器的计算甚至存储容量。因此,研究并行计算平台上深度模型的半监督学习成为一个迫切需要。为了更好地考虑这种情况,该项目开发了改进的网络架构来促进并行训练,并开发了自适应的训练过程,在同步和异步模式之间切换,以实现最佳效率。其主要思想是将参数分布纳入神经网络,并使用协变量匹配来协调不同机器之间的网络行为。研究人员还探索了一种新的应用,即视频序列的极端尺度时空动作注释,以对该项目中的算法和框架进行基准测试。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Yandong Li;Lijun Li;Liqiang Wang;Tong Zhang;Boqing Gong
- 通讯作者:Yandong Li;Lijun Li;Liqiang Wang;Tong Zhang;Boqing Gong
Learning a Multi-concept Video Retrieval Model with Multiple Latent Variables
- DOI:10.1145/3176647
- 发表时间:2016-12
- 期刊:
- 影响因子:0
- 作者:Amir Mazaheri;Boqing Gong;M. Shah
- 通讯作者:Amir Mazaheri;Boqing Gong;M. Shah
Photography and Exploration of Tourist Locations Based on Optimal Foraging Theory
- DOI:10.1109/tcsvt.2019.2915103
- 发表时间:2020-07-01
- 期刊:
- 影响因子:8.4
- 作者:Rawat, Yogesh Singh;Shah, Mubarak;Kankanhalli, Mohan S.
- 通讯作者:Kankanhalli, Mohan S.
Select to Better Learn: Fast and Accurate Deep Learning Using Data Selection From Nonlinear Manifolds
选择更好地学习:使用非线性流形中的数据选择进行快速准确的深度学习
- DOI:10.1109/cvpr42600.2020.00784
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Joneidi, Mohsen;Vahidian, Saeed;Esmaeili, Ashkan;Wang, Weijia;Rahnavard, Nazanin;Lin, Bill;Shah, Mubarak
- 通讯作者:Shah, Mubarak
Training Faster by Separating Modes of Variation in Batch-Normalized Models
- DOI:10.1109/tpami.2019.2895781
- 发表时间:2020-06-01
- 期刊:
- 影响因子:23.6
- 作者:Kalayeh, Mahdi M.;Shah, Mubarak
- 通讯作者:Shah, Mubarak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mubarak Shah其他文献
CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes
CodaMal:低成本显微镜中疟疾检测的对比域适应
- DOI:
10.48550/arxiv.2402.10478 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
I. Dave;Tristan de Blegiers;Chen Chen;Mubarak Shah - 通讯作者:
Mubarak Shah
Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images
Lung-CADex:胸部 CT 图像中肺结节的全自动零样本检测和分类
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Furqan Shaukat;Syed Muhammad Anwar;Abhijeet Parida;Van Lam;M. Linguraru;Mubarak Shah - 通讯作者:
Mubarak Shah
Out-of-Distribution Detection Using Union of 1 -Dimensional Subspaces: Supplementary Materials
使用一维子空间并集进行分布外检测:补充材料
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alireza Zaeemzadeh;N. Bisagno;Zeno Sambugaro;Nicola Conci;Nazanin Rahnavard;Mubarak Shah - 通讯作者:
Mubarak Shah
Robust Image Geolocalization
强大的图像地理定位
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Akhil Arularasu;P. Kulkarni;Gaurav Kumar;Mubarak Shah - 通讯作者:
Mubarak Shah
Machine Vision and Applications Understanding Human Behavior from Motion Imagery
机器视觉和应用从运动图像理解人类行为
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Mubarak Shah - 通讯作者:
Mubarak Shah
Mubarak Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mubarak Shah', 18)}}的其他基金
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
- 批准号:
2349386 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
Scholarships, Academic, and Social Supports to Provide Low-Income Transfers Students Opportunities for Nurtured Growth in AI
奖学金、学术和社会支持为低收入转学生提供促进人工智能发展的机会
- 批准号:
2321986 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Continuing Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
- 批准号:
2050731 - 财政年份:2021
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
CRI: II-New: Cognitive Mechanisms and Computational Modeling of Gaze Control During Scene Free Viewing, Visual Search, and Daily Tasks
CRI:II-新:场景自由观看、视觉搜索和日常任务期间注视控制的认知机制和计算模型
- 批准号:
1823276 - 财政年份:2018
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
STEM TRansfer Students Opportunity for Nurtured Growth (STRONG)
STEM 转学生提供培育成长的机会(强)
- 批准号:
1742424 - 财政年份:2018
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
- 批准号:
1757858 - 财政年份:2018
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
RET Site: Research Experiences for Teachers in Computer Vision and Bio-Medical Imaging
RET 网站:计算机视觉和生物医学成像教师的研究经验
- 批准号:
1542439 - 财政年份:2016
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
REU Site: NSF Research Experience for Undergraduates in Computer Vision
REU 网站:NSF 计算机视觉本科生研究经验
- 批准号:
1461121 - 财政年份:2015
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates in Computer Vision
REU 网站:计算机视觉本科生的研究经验
- 批准号:
1156990 - 财政年份:2012
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
Students Actualizing Talent at Education?s Subsequent Stages (STATESS)
学生在教育后续阶段实现才能(STATESS)
- 批准号:
0966249 - 财政年份:2010
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
相似国自然基金
多任务深度学习融合多模态数据术前精准预测IA期非小细胞肺癌亚肺叶切除术复发风险
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ia型超新星多波段实测特性及其机理研究
- 批准号:JCZRYB202500270
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ia型超新星及相关特殊天体研究
- 批准号:12333008
- 批准年份:2023
- 资助金额:239.00 万元
- 项目类别:重点项目
南方根结线虫Mi-UNP与Bt-Cry1Ia36互作研究及其功能分析
- 批准号:2023JJ30355
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
胞苷脱氨酶调控南方根结线虫响应Bt-Cry1Ia 胁迫的机制研究
- 批准号:2022JJ40235
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-23a~27a簇介导DNMT调控PD-L1和HLA-Ia表达促进早期肺腺癌复发的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
- 批准号:
2402381 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
ヤコビ図の空間の研究と自由群のIA-自己同型群の安定コホモロジー群の研究
雅可比图空间与自由群IA-自同构群的稳定上同调群的研究
- 批准号:
24K16916 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
NSF Engines Development Award: Advancing sustainable agriculture technologies (WI, IA, MN)
NSF 引擎发展奖:推进可持续农业技术(威斯康星州、爱荷华州、明尼苏达州)
- 批准号:
2305615 - 财政年份:2023
- 资助金额:
$ 66.24万 - 项目类别:
Cooperative Agreement
Unraveling the progenitors of Type Ia supernova remnants through combining high resolution X-ray spectroscopy and numerical simulation
通过结合高分辨率 X 射线光谱和数值模拟来解开 Ia 型超新星遗迹的前身
- 批准号:
22KJ1047 - 财政年份:2023
- 资助金额:
$ 66.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Demonstrative simulation of explosion models for Type Ia supernovae from the perspective of combustion engineering
燃烧工程视角下Ia型超新星爆炸模型验证模拟
- 批准号:
23K13146 - 财政年份:2023
- 资助金额:
$ 66.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Precise Measurement of Dark Energy through Type Ia Supernova from Subaru/HSC + HST data
通过 Subaru/HSC HST 数据的 Ia 型超新星精确测量暗能量
- 批准号:
23K03451 - 财政年份:2023
- 资助金额:
$ 66.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Realizability of the Double-Detonation Mechanism for Type Ia Supernovae
Ia型超新星双爆机制的可实现性
- 批准号:
2307442 - 财政年份:2023
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
Tracé de rayon assisté par IA
Tracà de rayon Assistà par IA
- 批准号:
574101-2022 - 财政年份:2022
- 资助金额:
$ 66.24万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




