Image-Data-Driven Deep Learning in Geosystems
地理系统中图像数据驱动的深度学习
基本信息
- 批准号:1742656
- 负责人:
- 金额:$ 22.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Breakthroughs in deep learning in 2006 triggered numerous cutting-edge innovations in text processing, speech recognition, driverless cars, disease diagnosis, and so on. This project will utilize the core concepts underlying the recent computer vision innovations to address a rarely-discussed, yet urgent issue in engineering: how to analyze the explosively increasing image data including images and videos, which are difficult to analyze with traditional methods. These concepts will be employed to explore the possibility of accurately assessing the safety of retaining walls with image data. This effort aims at setting up a paradigm for connecting engineering disciplines to artificial intelligence and enhancing the safety of geosystems as an essential infrastructure component by enabling their analysis with image-data-driven deep learning. The project will help revitalize traditional artificial intelligence sub-areas in geotechnical and other engineering areas, just as deep learning rekindled the interest in artificial neural networks and machine learning, and turned them into leading players in STEM research and innovations. The project may also change engineers' opinions regarding how to create knowledge with a revolutionary way attributed to deep learning, i.e., learning directly from data instead of indirectly from models established based on the data. Innovative education and outreach effort will be made by means of developing a mobile app to disseminate the idea and products of the project. The project will contribute to education by outreaching to K-12 students, underrepresented groups, and geotechnical engineering researchers and practitioners with the project products including the app at various events at the PIs' institution and professional conferences. The goal of this study is to understand the image-data-driven deep learning in geosystems with an exploratory investigation into the stability analysis of retaining walls. To achieve the goal, the recent breakthroughs in computer vision, which were later used as one of the core techniques in the development of Google's AlphaGo, will be studied for its capacity in assessing the stability of a typical geosystem, i.e., retaining walls. The core concept enabling machines to surpass humans in visual classification capacity, i.e., convolutional neural nets (CNN), will be used to process the big data in geotechnical engineering, which primarily consist of still and live images (videos), that cannot be readily analyzed using traditional geotechnical engineering methods. Conventional neural nets will be used to analyze images for retaining walls to tell whether a wall is safe or failed. For quantitative analysis, 2D and 3D images for retaining walls will be generated using stochastic methods and analyzed using traditional limit analysis and numerical methods for labeling. These labeled image data will be used as input to train convolutional neural nets for supervised learning. The trained nets will be tested against another independent set of data generated in the same way as the training data. Three research tasks will be conducted in this project: 1) understanding the data science for image-data-driven geotechnical engineering research, 2) investigating the connections between those image patterns in deep learning and the physical mechanisms, and 3) revealing the robustness and extrapolation capacity of the deep learning approach in the stability analysis of retaining walls.
2006年深度学习的突破引发了文本处理、语音识别、无人驾驶汽车、疾病诊断等领域的众多前沿创新。本项目将利用最新计算机视觉创新的核心概念来解决工程中很少讨论但又迫切的问题:如何分析传统方法难以分析的爆炸性增长的图像数据,包括图像和视频。这些概念将被用于探索利用图像数据准确评估挡土墙安全性的可能性。这项工作旨在建立一个范例,将工程学科与人工智能联系起来,并通过使用图像数据驱动的深度学习进行分析,提高地球系统作为重要基础设施组成部分的安全性。该项目将有助于重振岩土工程和其他工程领域的传统人工智能子领域,正如深度学习重新点燃了人们对人工神经网络和机器学习的兴趣,并使它们成为STEM研究和创新的领军人物一样。该项目还可能改变工程师对如何以一种革命性的深度学习方式创造知识的看法,即直接从数据中学习,而不是间接从基于数据建立的模型中学习。创新的教育和推广工作将通过开发一个移动应用程序来传播项目的理念和产品。该项目将通过向K-12学生、代表性不足的群体、岩土工程研究人员和从业者推广项目产品,包括在pi机构和专业会议上举办的各种活动中的应用程序,为教育做出贡献。本研究的目的是通过对挡土墙稳定性分析的探索性调查来理解地球系统中图像数据驱动的深度学习。为了实现这一目标,将研究最近在计算机视觉方面取得的突破,这些突破后来被用作谷歌的AlphaGo开发的核心技术之一,以评估典型地质系统(即挡土墙)的稳定性。使机器在视觉分类能力上超越人类的核心概念,即卷积神经网络(CNN),将被用于处理岩土工程中的大数据,这些大数据主要由静止和实时图像(视频)组成,传统的岩土工程方法无法轻易分析。传统的神经网络将用于分析挡土墙的图像,以判断墙是安全的还是失败的。在定量分析方面,将采用随机方法生成挡土墙的二维和三维图像,并使用传统的极限分析和数值标记方法进行分析。这些标记的图像数据将用作训练卷积神经网络进行监督学习的输入。训练后的网络将针对与训练数据相同的方式生成的另一组独立数据进行测试。本项目将开展三项研究任务:1)理解图像数据驱动岩土工程研究的数据科学;2)研究深度学习中图像模式与物理机制之间的联系;3)揭示深度学习方法在挡土墙稳定性分析中的鲁棒性和外推能力。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Deep Learning against Conventional Limit Equilibrium Methods for Slope Stability Analysis
- DOI:10.3390/app11136060
- 发表时间:2021-07-01
- 期刊:
- 影响因子:2.7
- 作者:Azmoon, Behnam;Biniyaz, Aynaz;Liu, Zhen (Leo)
- 通讯作者:Liu, Zhen (Leo)
Real-time computing of pavement conditions in cold regions: A large-scale application with road weather information system
- DOI:10.1016/j.coldregions.2021.103228
- 发表时间:2021-04
- 期刊:
- 影响因子:4.1
- 作者:Zhen Liu;J. Bland;Ting Bao;M. Billmire;Aynaz Biniyaz
- 通讯作者:Zhen Liu;J. Bland;Ting Bao;M. Billmire;Aynaz Biniyaz
Understanding Human Behaviors and Injury Factors in Underground Mines using Data Analytics
使用数据分析了解地下矿井中的人类行为和伤害因素
- DOI:10.1109/embc46164.2021.9630428
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liu, Xinyun;Liu, Zhen;Chatterjee, Snehamoy;Portfleet, Matthew;Sun, Ye
- 通讯作者:Sun, Ye
Long Short-Term Memory Based Subsurface Drainage Control for Rainfall-Induced Landslide Prevention
- DOI:10.3390/geosciences12020064
- 发表时间:2022-01
- 期刊:
- 影响因子:2.7
- 作者:Aynaz Biniyaz;Behnam Azmoon;Ye Sun;Zhen Liu
- 通讯作者:Aynaz Biniyaz;Behnam Azmoon;Ye Sun;Zhen Liu
An Exploratory Investigation into Image-Data-Driven Deep Learning for Stability Analysis of Geosystems
- DOI:10.1007/s10706-021-01921-w
- 发表时间:2021-08
- 期刊:
- 影响因子:1.7
- 作者:Zhen Liu;Shiyan Hu;Ye Sun;Behnam Azmoon
- 通讯作者:Zhen Liu;Shiyan Hu;Ye Sun;Behnam Azmoon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Liu其他文献
Impact of Asian aerosols on the summer monsoon strongly 1 modulated by regional precipitation biases 2
亚洲气溶胶对夏季风的影响受到区域降水偏差的强烈调节 2
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhen Liu;Massimo A. Bollasina;Laura J. Wilcox - 通讯作者:
Laura J. Wilcox
Searching for millicharged particles with 1 kg of Skipper-CCDs using the NuMI beam at Fermilab
在费米实验室使用 NuMI 光束通过 1 kg Skipper-CCD 搜索毫带电粒子
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Perez;D. Rodrigues;J. Estrada;R. Harnik;Zhen Liu;B. A. Cervantes;J. Dolivo;R. Plestid;J. Tiffenberg;T. Yu;A. Aguilar;Fabricio Alcalde;N. Avalos;Oscar Baez;D. Baxter;X. Bertou;C. Bonifazi;A. Botti;G. Cancelo;N. Castello;A. Chavarria;C. Chavez;F. Chierchie;Juana De Egea;C. Dreyer;A. Drlica;R. Essig;E. Estrada;E. Etzion;Paul Grylls;G. Fernandez;M. Fernández;Santiago Ferreyra;S. Holland;A. Barreda;A. Lathrop;I. Lawson;B. Loer;S. Luoma;Edgar Marrufo Villalpando;M. M. Montero;Kellie McGuire;J. Molina;S. Munagavalasa;D. Norcini;A. Piers;P. Privitera;N. Saffold;R. Saldanha;A. Singal;R. Smida;M. Sofo;D. Stalder;L. Stefanazzi;M. Traina;Yu;S. Uemura;P. Ventura;R. V. Cortabitarte;R. Yajur - 通讯作者:
R. Yajur
A new feature selection algorithm based on binomial hypothesis testing for spam filtering
一种基于二项式假设检验的垃圾邮件过滤新特征选择算法
- DOI:
10.1016/j.knosys.2011.04.006 - 发表时间:
2011-08 - 期刊:
- 影响因子:8.8
- 作者:
Jieming Yang;Yuanning Liu;Zhen Liu;Xiaodong Zhu;Xiaoxu Zhang - 通讯作者:
Xiaoxu Zhang
Theoretical investigations on the U2Mo3Si4 compound from first-principles calculations
U2Mo3Si4 化合物的第一性原理计算理论研究
- DOI:
10.1016/j.pnucene.2019.103121 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Jiexi Song;Yaolin Guo;Moran Bu;Zhen Liu;Diwei Shi;Qing Huang;Shiyu Du - 通讯作者:
Shiyu Du
Chemical kinetics modelling study on fuel autoignition in internal combustion engines
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Zhen Liu - 通讯作者:
Zhen Liu
Zhen Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Liu', 18)}}的其他基金
Exploratory Investigation of Thermally-Induced Water Flow in Soils
土壤中热诱导水流的探索性研究
- 批准号:
1562522 - 财政年份:2016
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
- 批准号:
23K11121 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Open Software Platform for Data-Driven Image-Guided Robotic Interventions
用于数据驱动图像引导机器人干预的开放软件平台
- 批准号:
10608711 - 财政年份:2022
- 资助金额:
$ 22.74万 - 项目类别:
Development of an image reconstruction method for the data driven SPECT system with deep learning
开发基于深度学习的数据驱动 SPECT 系统的图像重建方法
- 批准号:
22K12874 - 财政年份:2022
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven CT image harmonization and hierarchical modeling in multi-institutional databases for musculoskeletal disease analysis
多机构数据库中数据驱动的 CT 图像协调和分层建模,用于肌肉骨骼疾病分析
- 批准号:
21K18080 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Integrated Model-Driven and Data-Driven Framework for Hyper-Spectral Image Super-Resolution
用于超光谱图像超分辨率的集成模型驱动和数据驱动框架
- 批准号:
20K11867 - 财政年份:2020
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scalable Uncertainty Quantification for Data-Driven PET Image Reconstruction
用于数据驱动 PET 图像重建的可扩展不确定性量化
- 批准号:
2298269 - 财政年份:2019
- 资助金额:
$ 22.74万 - 项目类别:
Studentship
OAC Core: Small: Shape-Image-Text: A Data-Driven Joint Embedding Framework for Representing and Analyzing Large-Scale Brain Microvascular Data
OAC 核心:小型:形状-图像-文本:用于表示和分析大规模脑微血管数据的数据驱动的联合嵌入框架
- 批准号:
1910469 - 财政年份:2019
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
CHS: Small: Data-Driven Retention in Crowdsourced Image Analysis and Mapping
CHS:小型:众包图像分析和绘图中的数据驱动保留
- 批准号:
1816426 - 财政年份:2018
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Creation of Humanities research infrastructure by generation of integrated historical material image data and establishment of its driven method
通过生成综合史料图像数据并建立其驱动方法来创建人文研究基础设施
- 批准号:
18H03576 - 财政年份:2018
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




