EAGER: Exploring Cell-Cell Gap as a Critical Parameter in Biological Phase Changes

EAGER:探索细胞间间隙作为生物相变的关键参数

基本信息

  • 批准号:
    1742908
  • 负责人:
  • 金额:
    $ 29.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Biological systems sometimes rapidly change behavior when the number of cells becomes large enough. This EArly-concept Grant for Exploratory Research (EAGER) project is based on preliminary data showing that for one type of mammalian cell, that it is the distance between the cells that triggers the different behavior. This was observed for a particular type of muscle cell. When the cells are 100 micrometers apart, the form into muscle "fibers" automatically. When they are further than 100 micrometers apart, they do not. This observation will be further examined in fibroblasts. The compression of extracellular matrix by fibroblasts is fundamental to the healing of wounds and also to the original morphogenesis of organs. The project will determine whether this threshold of 100 micrometers is also true for fibroblasts from mice, monkeys and humans. As a test of the breadth of the observation, the 100 micrometer threshold will also be tested using the Protista Dictyostelium that has the property of aggregating into larger structures under some conditions. If the results of the experiments are comparable among the different cell types, the project will have developed significant support for the existence of a threshold distance for the activation of a tissue "phase change" in the aggregation of fibroblasts and of Dictyostelium. This could improve our understanding of a variety of conditions where tissues apparently show a phase change in behavior including embryogenesis, cancer tumorigenesis, in vitro tissue formation, bacterial biofilm formation and a variety of collective phenomena in the microbial world. Identification of critical distance conditions will help with predicting the path of morphogenesis of 3D printed tissues with cells and extracellular matrix. The research will be carried out by a graduate and two undergraduate students. One of the UG students will be from the Department of Biology, the others from Engineering. Thus, the students will be trained in multidisciplinary fields. Special effort will be made to recruit students from minorities and under-represented groups to conduct the research.The project is inspired by recent experimental findings suggesting that muscle cells within 100 micrometers of each other in 3D culture compact the ECM and form myotubes (PI's lab), endothelial cells within 100 micrometers of each other form vasculature, fibroblasts in collagen within 100 micrometers of each other compact the collagen. When the cell-cell gap exceeds 100 micrometers, none of these processes occur. The hypothesis of a critical distance will be tested using fibroblasts from multiple species (mouse, monkey and human) in a collagen matrix mixed with fluorescent beads for optically tracking compaction and cluster formation by slime mold cells (Dictyostelium). In order to gain insight on the experimental observations of the threshold cell-cell gap, a mathematical model will be created to simulate the experimental observations. Each cell remodels the matrix around them by adhering to the matrix and by pulling the fibers as the cell filopodia generate contractile forces. Each cell forms a zone of remodeled matrix with higher stiffness under tension. If cells are far apart, their zones remain independent of each other. In a system with many cells, such non-interacting zones maintain global symmetry. When the cells are close to each other, their zones overlap, and symmetry is broken. The stiffness between the cells becomes higher, and the cells form a stiffer fibrous bridge between them. More filopodia tend to extend along the bridge compared to other directions, the cells become polarized and elongated while remaining contractile. This results in an attractive interaction between the cells that will compact the matrix. Three types of fibroblasts from mouse (embryonic fibroblast, NIH/3T3), monkey (kidney fibroblasts) and human (lung) will be used to test hypothesis on matrix compaction, and slime mold cells (Dictyostelium discoideum) will be used to test for generality. All of these cell types have comparable size, ~ 10 micrometer in diameter. Hence, we predict similar critical distances for all cell types.
当细胞数量变得足够大时,生物系统有时会迅速改变行为。这个早期概念探索性研究拨款(AGERGE)项目基于初步数据,表明对于一种哺乳动物细胞,触发不同行为的是细胞之间的距离。这是在一种特殊类型的肌肉细胞中观察到的。当细胞之间相距100微米时,就会自动形成肌肉“纤维”。当它们之间的距离超过100微米时,它们就不会。这一观察结果将在成纤维细胞中得到进一步检验。成纤维细胞对细胞外基质的压缩是创面愈合和器官原始形态发生的基础。该项目将确定这个100微米的门槛是否也适用于小鼠、猴子和人类的成纤维细胞。作为对观察广度的一种测试,100微米的门槛也将使用在某些条件下具有聚集成更大结构的特性的Protista Dictyostoma进行测试。如果实验结果在不同类型的细胞中具有可比性,该项目将显著支持在成纤维细胞和网状网茎中的聚集中存在激活组织“相变”的阈值距离。这可以提高我们对各种条件的理解,在这些条件下,组织明显表现出行为的相变,包括胚胎发生、癌症发生、体外组织形成、细菌生物膜形成以及微生物世界中的各种集体现象。识别临界距离条件将有助于预测具有细胞和细胞外基质的3D打印组织的形态发生路径。这项研究将由一名研究生和两名本科生进行。UG的一名学生将来自生物系,其他学生将来自工程系。因此,学生将接受多学科领域的培训。将特别努力从少数族裔和代表性不足的群体中招募学生进行这项研究。该项目的灵感来自最近的实验发现,在3D培养中,彼此100微米以内的肌肉细胞压缩ECM并形成肌管(Pi的实验室),彼此100微米以内的内皮细胞形成血管系统,胶原蛋白中的成纤维细胞紧凑胶原蛋白。当细胞-细胞间隙超过100微米时,这些过程都不会发生。关键距离的假设将使用来自多个物种(小鼠、猴子和人类)的成纤维细胞在胶原基质中与荧光珠混合进行验证,以光学跟踪粘液霉菌细胞(Dictyostelius)的致密化和集群形成。为了深入了解阈值电池-电池间隙的实验观察,将建立一个数学模型来模拟实验观察。每个细胞通过附着在基质上,并在细胞丝状基座产生收缩力量时拉动纤维来重塑它们周围的基质。每个单元在拉伸下形成一个具有较高刚度的重塑矩阵区域。如果细胞相隔很远,它们的区域就保持彼此独立。在一个有许多细胞的系统中,这样的非相互作用区保持全局对称性。当单元格彼此靠近时,它们的区域重叠,对称性被破坏。细胞之间的硬度变得更高,细胞之间形成了更坚硬的纤维桥。与其他方向相比,更多的丝状伪足倾向于沿着桥延伸,细胞变得极化和拉长,同时保持收缩。这会在细胞之间产生吸引人的相互作用,从而使基质紧凑。来自小鼠(胚胎成纤维细胞,NIH/3T3)、猴子(肾脏成纤维细胞)和人(肺)的三种类型的成纤维细胞将被用来检验关于基质紧凑的假说,而黏液霉菌细胞(盘基网柄菌)将被用来检验其普遍性。所有这些类型的细胞都有类似的大小,直径约10微米。因此,我们为所有类型的细胞预测相似的临界距离。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taher Saif其他文献

Partial Treatment of <em>In Vivo</em> Single Axons by Mounting a Microfluidic Device Directly
  • DOI:
    10.1016/j.bpj.2017.11.3618
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Fan;Alireza Tofangchi;Taher Saif
  • 通讯作者:
    Taher Saif
Enabling scalable parallel implementations of structured adaptive mesh refinement applications
  • DOI:
    10.1007/s11227-007-0110-z
  • 发表时间:
    2007-02-28
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Sumir Chandra;Xiaolin Li;Taher Saif;Manish Parashar
  • 通讯作者:
    Manish Parashar

Taher Saif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taher Saif', 18)}}的其他基金

FORce-Mediated Cognition by Exercise (FORCE)
力介导的运动认知 (FORCE)
  • 批准号:
    2342257
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
An ultra-sensitive micro sensor for biophysical studies of single cells cultured in 3D extracellular matrix
用于 3D 细胞外基质中培养的单细胞生物物理研究的超灵敏微传感器
  • 批准号:
    1934991
  • 财政年份:
    2019
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Force Pathway to Synaptic Vesicle Clustering in Embryonic Fruit Fly Neuro Muscular Junctions
胚胎果蝇神经肌肉接头突触小泡聚集的力通路
  • 批准号:
    1935181
  • 财政年份:
    2019
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Effect Of Small Size, Stress Localization And Stress Gradient On The Strength Of Silicon
小尺寸、应力局部化和应力梯度对硅强度的影响
  • 批准号:
    1562694
  • 财政年份:
    2016
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Cell and Matrix Mechanobiology: Current State and Future Directions; University of Illinois at Urbana-Champaign; October 26-28, 2015
细胞和基质力学生物学:现状和未来方向;
  • 批准号:
    1546976
  • 财政年份:
    2015
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Exploring the Impact of Mechanical Force on Synaptic Functions Using Novel Approaches
使用新方法探索机械力对突触功能的影响
  • 批准号:
    1300808
  • 财政年份:
    2013
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Exploring Size Dependent Brittle-to-Ductile Transition in Single Crystal Silicon Using High Temperature MEMS
使用高温 MEMS 探索单晶硅中与尺寸相关的脆性到延性转变
  • 批准号:
    1102201
  • 财政年份:
    2011
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Regulation of Cancer Cell Metastasis by Mechanical Force
机械力调节癌细胞转移
  • 批准号:
    1002165
  • 财政年份:
    2010
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Understanding Force-Induced Learning and Memory
了解力诱导的学习和记忆
  • 批准号:
    0800870
  • 财政年份:
    2008
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Towards a neuro-mechanical memory element
走向神经机械记忆元件
  • 批准号:
    0801928
  • 财政年份:
    2008
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MechanoROS-T: Exploring mechanoregulated hydrogen peroxide as a mechanism of T cell activation
MechanoROS-T:探索机械调节的过氧化氢作为 T 细胞激活的机制
  • 批准号:
    EP/Z000114/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Research Grant
Exploring multidisciplinary approaches from Stem Cell Biology and Microengineering to biomanufacture perfused organoids
探索从干细胞生物学和微工程到生物制造灌注类器官的多学科方法
  • 批准号:
    BB/W018470/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Research Grant
NSF Postdoctoral Fellowship in Biology: Exploring Cell-type Regulatory Dynamics of CAM and C4 Photosynthesis in Portulaca
NSF 生物学博士后奖学金:探索马齿苋中 CAM 和 C4 光合作用的细胞类型调节动力学
  • 批准号:
    2208915
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Fellowship Award
Exploring the effect on T cell tolerance by B cell depletion therapy in MS
探索 B 细胞耗竭疗法对多发性硬化症 (MS) 中 T 细胞耐受性的影响
  • 批准号:
    23K06810
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unraveling Pathogenic T-Cell Mechanisms and Exploring Therapeutic Targets in Sjögren's Syndrome
揭示 Sj 的致病 T 细胞机制并探索治疗靶点
  • 批准号:
    23K19583
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Exploring metabolic governance of immune cell form and function
探索免疫细胞形式和功能的代谢调控
  • 批准号:
    10725429
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
Exploring microRNA degradation in T-cell acute lymphoblastic leukemia
探索 T 细胞急性淋巴细胞白血病中的 microRNA 降解
  • 批准号:
    10717486
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
Exploring the role of bioactive lipids in cell death pathways underpinning inflammatory skin disease
探索生物活性脂质在炎症性皮肤病细胞死亡途径中的作用
  • 批准号:
    2899550
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Studentship
Mechanisms of neuronal circuit pathogenesis and exploring for therapeutic agents using iPS Cell induced astrocytes from epilepsy patients
神经回路发病机制及利用 iPS 细胞诱导癫痫患者星形胶质细胞探索治疗药物
  • 批准号:
    23H02805
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了