Effect Of Small Size, Stress Localization And Stress Gradient On The Strength Of Silicon
小尺寸、应力局部化和应力梯度对硅强度的影响
基本信息
- 批准号:1562694
- 负责人:
- 金额:$ 35.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports an investigation of the failure behavior of silicon at small scales. Most micro-nano mechanical systems use silicon beams as their structural components. These beams are typically subjected to bending during operation. But silicon is brittle at room temperature. This limits the design space of silicon devices. Bending, however, localizes high stresses near the surface of the beams close to the anchors. In addition, the stresses decrease from the surface towards the middle plane of the beam, giving rise to stress gradients. The effects of small size, stress localization and stress gradient on the failure mechanisms of silicon remain elusive to date. Recent evidence suggests that silicon at small scale can be ductile (i.e., not brittle) at very high yield stresses. If so, then small size, stress localization and stress gradients together may offer the virtues of both ductility and high strength to silicon. Such failure resistance would present a yet untapped paradigm to the design space of silicon devices. A detailed understanding of the failure and deformation mechanisms of silicon at small scale under bending would be transformative for both semiconductor physics and industry, and will be a fundamental advance for the field of mechanics. The goal of this project is to explore the mechanics and mechanisms of deformation and failure in small silicon samples under bending by combining theory and experiments. The working hypothesis of the project is that dislocation is the primary mechanism of deformation in silicon under bending at small scale. Small samples are dislocation free. Small size and stress localization in bending offer high flaw tolerance against fracture. This is due to the low probability of flaw incidence in the small stressed region. Bending results in dislocation nucleation from the surface before any flaw induced fracture. These dislocations enter the bulk yielding the silicon. But the yield stress increases with decreasing size due to stress gradient. This hypothesis will be tested by undertaking three tasks: (1) mechanistic modeling and molecular dynamics simulations of silicon samples under bending, (2) bending experiments on micro-nano fabricated single crystal silicon samples with various sizes and at different temperatures, and (3) in situ bending experiments in transmission electron microscopes (TEM) to reveal the mechanisms of deformation (in collaboration with Max Planck Institute at Dusseldorf, Germany). A novel micro mechanical stage will be developed for tasks 2 and 3. The research will be integrated with education and outreach activities involving K-12 to graduate students.
该奖项支持在小尺度上对硅的失效行为进行研究。大多数微纳机械系统使用硅梁作为其结构部件。这些梁通常在操作期间经受弯曲。但是硅在室温下很脆。这限制了硅器件的设计空间。然而,弯曲使高应力集中在靠近锚的梁表面附近。此外,应力从梁的表面朝向中间平面减小,从而产生应力梯度。迄今为止,小尺寸、应力局部化和应力梯度对硅材料失效机制的影响仍然是难以捉摸的。最近的证据表明,小规模的硅可以是可延展的(即,不脆)。如果是这样的话,那么小尺寸、应力局部化和应力梯度一起可以为硅提供延展性和高强度的优点。这种故障抵抗性将为硅器件的设计空间提供一个尚未开发的范例。详细了解硅在小尺度弯曲下的失效和变形机制将对半导体物理和工业产生变革性影响,并将成为力学领域的根本性进步。本课题旨在通过理论与实验相结合的方法,探索硅小试样在弯曲条件下的变形和破坏机理。该项目的工作假设是位错是硅在小尺度弯曲下变形的主要机制。小样品无位错。小尺寸和弯曲时的应力局部化提供了高的抗断裂缺陷容限。这是由于在小应力区域内发生缺陷的可能性较低。弯曲导致在任何缺陷诱导断裂之前从表面的位错成核。这些位错进入块体,产生硅。但由于应力梯度的存在,屈服应力随着尺寸的减小而增大。将通过以下三项任务来检验这一假设:(1)弯曲条件下硅样品的力学建模和分子动力学模拟,(2)不同尺寸和不同温度下微纳加工单晶硅样品的弯曲实验,透射电镜(TEM)原位弯曲实验,揭示变形机理(与德国杜塞尔多夫马克斯·普朗克研究所合作编写)。将为任务2和任务3开发一种新型微机械工作台。这项研究将与涉及K-12研究生的教育和外联活动相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taher Saif其他文献
Partial Treatment of <em>In Vivo</em> Single Axons by Mounting a Microfluidic Device Directly
- DOI:
10.1016/j.bpj.2017.11.3618 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Anthony Fan;Alireza Tofangchi;Taher Saif - 通讯作者:
Taher Saif
Enabling scalable parallel implementations of structured adaptive mesh refinement applications
- DOI:
10.1007/s11227-007-0110-z - 发表时间:
2007-02-28 - 期刊:
- 影响因子:2.700
- 作者:
Sumir Chandra;Xiaolin Li;Taher Saif;Manish Parashar - 通讯作者:
Manish Parashar
Taher Saif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taher Saif', 18)}}的其他基金
FORce-Mediated Cognition by Exercise (FORCE)
力介导的运动认知 (FORCE)
- 批准号:
2342257 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
An ultra-sensitive micro sensor for biophysical studies of single cells cultured in 3D extracellular matrix
用于 3D 细胞外基质中培养的单细胞生物物理研究的超灵敏微传感器
- 批准号:
1934991 - 财政年份:2019
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Force Pathway to Synaptic Vesicle Clustering in Embryonic Fruit Fly Neuro Muscular Junctions
胚胎果蝇神经肌肉接头突触小泡聚集的力通路
- 批准号:
1935181 - 财政年份:2019
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
EAGER: Exploring Cell-Cell Gap as a Critical Parameter in Biological Phase Changes
EAGER:探索细胞间间隙作为生物相变的关键参数
- 批准号:
1742908 - 财政年份:2017
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Cell and Matrix Mechanobiology: Current State and Future Directions; University of Illinois at Urbana-Champaign; October 26-28, 2015
细胞和基质力学生物学:现状和未来方向;
- 批准号:
1546976 - 财政年份:2015
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Exploring the Impact of Mechanical Force on Synaptic Functions Using Novel Approaches
使用新方法探索机械力对突触功能的影响
- 批准号:
1300808 - 财政年份:2013
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Exploring Size Dependent Brittle-to-Ductile Transition in Single Crystal Silicon Using High Temperature MEMS
使用高温 MEMS 探索单晶硅中与尺寸相关的脆性到延性转变
- 批准号:
1102201 - 财政年份:2011
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Regulation of Cancer Cell Metastasis by Mechanical Force
机械力调节癌细胞转移
- 批准号:
1002165 - 财政年份:2010
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Understanding Force-Induced Learning and Memory
了解力诱导的学习和记忆
- 批准号:
0800870 - 财政年份:2008
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Towards a neuro-mechanical memory element
走向神经机械记忆元件
- 批准号:
0801928 - 财政年份:2008
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Size-selective synthesis of small metal clusters in redox-active porous ionic crystals
氧化还原活性多孔离子晶体中小金属簇的尺寸选择性合成
- 批准号:
22KJ1159 - 财政年份:2023
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2243659 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
The Study of the paradox for multi-stage to the integration and small-size to big-size of wholesaler
批发商多级到一体化、小到大的悖论研究
- 批准号:
22K01777 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Disabled People Work and Small-Medium-Size Enterprises
残疾人工作和中小企业
- 批准号:
ES/X003760/1 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Fellowship
CNS Core: Small: One Size doesn't Fit All: Workload-Aware Cost Optimization for Decentralized Applications on Blockchains
CNS 核心:小:一刀切:区块链上分散式应用程序的工作负载感知成本优化
- 批准号:
2139801 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224131 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224132 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Development of a small-size and light-weight active inerter damper for seismic protection
小型轻量抗震主动惯性阻尼器的研制
- 批准号:
22F32060 - 财政年份:2022
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hemodynamic analyses of the portal vein flow changes using MRI, focusing on post-hepatectomy liver regeneration and small-for-size syndrome.
使用 MRI 对门静脉血流变化进行血流动力学分析,重点关注肝切除术后肝脏再生和小体积综合征。
- 批准号:
21K20947 - 财政年份:2021
- 资助金额:
$ 35.57万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Big data for small patients - Building "child-size" individual predictive models for life after childhood cancer
小型患者的大数据 - 为儿童癌症后的生活建立“儿童大小”的个体预测模型
- 批准号:
EP/T028017/1 - 财政年份:2021
- 资助金额:
$ 35.57万 - 项目类别:
Fellowship