Force Pathway to Synaptic Vesicle Clustering in Embryonic Fruit Fly Neuro Muscular Junctions

胚胎果蝇神经肌肉接头突触小泡聚集的力通路

基本信息

  • 批准号:
    1935181
  • 负责人:
  • 金额:
    $ 73.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Memory and learning in animals are achieved by neurotransmission at neuron-neuron or neuro-muscular junctions called synapses. These synapses are formed at the end of long cable-like extensions of neurons, called axons. The axonal part of the junction is called the pre-synaptic terminal. It hosts small (~50 nm) vesicles containing neurotransmitters. Some of the vesicles are at the active site close to the wall of the synapse, ready to release their contents. Others are clustered within the synapse as a reserve pool. When the neuron fires, an electric signal, known as the action potential, arrives at the synapse. Some of the vesicles at the active site release their neurotransmitters and stimulate the post synaptic terminal. Thus, a signal is transmitted. New vesicle from the reserve pool join the active site. Clearly, to achieve neurotransmission, neurons must cluster reserve-pool vesicles at the synapse against diffusion, and yet provide them directed mobility to replace the released ones at the active site. In spite of decades of research, the mechanism of this duality remains elusive. This project attempts to resolve this paradox by linking a mechanical property of the axon, namely its contractility or mechanical tension, with vesicle clustering, dynamics and release. Prior work of the PI on embryonic Drosophila (fruit fly) revealed that vesicle clustering at the neuromuscular presynaptic terminal depends on mechanical tension of the axons. The findings of this research will be disseminated to the broader audience by developing a short drama with high school students, in collaboration with a drama teacher, to represent neurotransmission -- with characters mimicking vesicles, ions, actin and synapsin-I. The research will also be integrated with education through involvement of undergraduate students from underrepresented groups in research, exhibition modules at the local Children's Museum, and teaching biophysics to high school teachers. The project is based on the hypothesis that axons of motor neurons forming neuro-muscular junctions in embryonic flies have an contractile acto-myosin network along their entire length, including the synapse. This force continuity results in a stable F-actin architecture at the synapse. Ion sensitive adhesion proteins, e,g., synapsin I, attach (glue) vesicles to synaptic F-actin, thus clustering and immobilizing them against diffusion. During an action potential, synaptic Calcium ion concentration increases, and the adhesion proteins release the vesicles. They are then moved by motor proteins to and away from the active sites along the F-actin fibers. Thus, synaptic F-actin architecture serves as a scaffold for vesicles to cluster, as well as a double-lane highway for their directed mobility. This hypothesis will be tested by studying the neuro-muscular junction of embryonic Drosophila in three steps. First, to test whether acto-myosin machinery is involved in contractile force generation along the entire length of the axon including synapse. Second, to test whether there exists an F-actin architecture at the synapse stabilized by the axonal contractile force, and whether it serves as a scaffold for the vesicles to adhere, as well as a highway for their transport. Finally, to test whether axonal force modulates neurotransmission. Novel nano-mechanical force sensors, micro-fluidics, high resolution microscopy (Stochastic Optical Reconstruction Microscopy, STORM), nano-probe and cyclic voltammetry will be used to test the hypothesis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动物的记忆和学习是通过称为突触的神经元-神经元或神经-肌肉接头的神经传递来实现的。这些突触是在神经元的长索状延伸的末端形成的,称为轴突。连接的轴突部分被称为突触前终末。它含有含有神经递质的小泡(~50 nm)。一些囊泡位于靠近突触壁的活性部位,准备释放其内容物。其他的则聚集在突触内作为一个储备池。当神经元放电时,一个被称为动作电位的电信号到达突触。活动部位的一些小泡释放它们的神经递质,刺激突触后终末。因此,发送信号。来自储备池的新水泡加入活动站点。显然,为了实现神经传递,神经元必须在突触聚集储备池小泡以防止扩散,同时为它们提供定向移动性,以取代活动部位释放的小泡。尽管进行了数十年的研究,但这种二元性的机制仍然难以捉摸。这个项目试图通过将轴突的机械属性,即其收缩或机械张力,与囊泡聚集、动力学和释放联系起来,来解决这一悖论。在果蝇胚胎上的PI研究表明,神经肌肉突触前末端的囊泡聚集依赖于轴突的机械张力。这项研究的发现将通过与一名戏剧老师合作,与高中生合作制作一部短剧来传播给更广泛的观众,以代表神经传递--人物模仿囊泡、离子、肌动蛋白和突触素-I。这项研究还将与教育相结合,让来自代表性不足群体的本科生参与研究,在当地儿童博物馆展示模块,以及向高中教师教授生物物理学。该项目基于这样的假设,即在胚胎果蝇中,形成神经肌肉连接的运动神经元的轴突在包括突触在内的整个长度上都有一个收缩的肌球蛋白网络。这种力的连续性导致了突触处稳定的F-肌动蛋白结构。离子敏感的黏附蛋白,例如,突触素I,将囊泡附着(粘合)到突触F-肌动蛋白上,从而聚集和固定它们以防止扩散。在动作电位期间,突触钙离子浓度增加,黏附蛋白释放小泡。然后,它们被马达蛋白沿着F-肌动蛋白纤维移动到活性部位或离开活性部位。因此,突触F-肌动蛋白构筑既是囊泡聚集的支架,也是其定向移动的双车道高速公路。这一假说将通过分三步研究果蝇胚胎的神经-肌肉连接来验证。首先,为了测试acto-myosin机制是否参与了包括突触在内的整个轴突的收缩力量的产生。第二,测试突触是否存在由轴突收缩力稳定的F-肌动蛋白构筑,以及它是否作为囊泡附着的支架,以及它们运输的高速公路。最后,测试轴突力是否调节神经传递。新型纳米机械力传感器、微流体、高分辨率显微镜(随机光学重建显微镜,STORM)、纳米探头和循环伏安法将用于验证假设。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synapses without tension fail to fire in an in vitro network of hippocampal neurons
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taher Saif其他文献

Partial Treatment of <em>In Vivo</em> Single Axons by Mounting a Microfluidic Device Directly
  • DOI:
    10.1016/j.bpj.2017.11.3618
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Fan;Alireza Tofangchi;Taher Saif
  • 通讯作者:
    Taher Saif
Enabling scalable parallel implementations of structured adaptive mesh refinement applications
  • DOI:
    10.1007/s11227-007-0110-z
  • 发表时间:
    2007-02-28
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Sumir Chandra;Xiaolin Li;Taher Saif;Manish Parashar
  • 通讯作者:
    Manish Parashar

Taher Saif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taher Saif', 18)}}的其他基金

FORce-Mediated Cognition by Exercise (FORCE)
力介导的运动认知 (FORCE)
  • 批准号:
    2342257
  • 财政年份:
    2024
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
An ultra-sensitive micro sensor for biophysical studies of single cells cultured in 3D extracellular matrix
用于 3D 细胞外基质中培养的单细胞生物物理研究的超灵敏微传感器
  • 批准号:
    1934991
  • 财政年份:
    2019
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
EAGER: Exploring Cell-Cell Gap as a Critical Parameter in Biological Phase Changes
EAGER:探索细胞间间隙作为生物相变的关键参数
  • 批准号:
    1742908
  • 财政年份:
    2017
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Effect Of Small Size, Stress Localization And Stress Gradient On The Strength Of Silicon
小尺寸、应力局部化和应力梯度对硅强度的影响
  • 批准号:
    1562694
  • 财政年份:
    2016
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Cell and Matrix Mechanobiology: Current State and Future Directions; University of Illinois at Urbana-Champaign; October 26-28, 2015
细胞和基质力学生物学:现状和未来方向;
  • 批准号:
    1546976
  • 财政年份:
    2015
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Exploring the Impact of Mechanical Force on Synaptic Functions Using Novel Approaches
使用新方法探索机械力对突触功能的影响
  • 批准号:
    1300808
  • 财政年份:
    2013
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Exploring Size Dependent Brittle-to-Ductile Transition in Single Crystal Silicon Using High Temperature MEMS
使用高温 MEMS 探索单晶硅中与尺寸相关的脆性到延性转变
  • 批准号:
    1102201
  • 财政年份:
    2011
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Regulation of Cancer Cell Metastasis by Mechanical Force
机械力调节癌细胞转移
  • 批准号:
    1002165
  • 财政年份:
    2010
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Understanding Force-Induced Learning and Memory
了解力诱导的学习和记忆
  • 批准号:
    0800870
  • 财政年份:
    2008
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Standard Grant
Towards a neuro-mechanical memory element
走向神经机械记忆元件
  • 批准号:
    0801928
  • 财政年份:
    2008
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

复杂疾病多态性miRNA-mRNA-pathway致病模式挖掘研究
  • 批准号:
    2020JJ4209
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
软骨细胞介导外泌体调节软骨下骨祖细胞Wnt/β-catenin pathway在骨关节炎中的作用及其机制研究
  • 批准号:
    81972087
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
Ptch1 基因通过 Hh 信号通路(Hedgehog signaling pathway)对卵巢癌细胞增殖和凋亡的影响
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    3.0 万元
  • 项目类别:
    省市级项目
Drug-ADR-Pathway复合网络构建及ADR分子机制研究
  • 批准号:
    61372188
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
基于protein pathway array 技术导向的胃癌淋巴结转移预警蛋白表达特征的研究
  • 批准号:
    81372295
  • 批准年份:
    2013
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
miR-143/HDAC7 pathway 通过调控组蛋白乙酰化改变影响骨肉瘤转移特性的分子机制研究
  • 批准号:
    81202122
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
大肠癌发生机制的adenoma-adenocarcinoma pathway同serrated pathway的关系的研究
  • 批准号:
    30840003
  • 批准年份:
    2008
  • 资助金额:
    12.0 万元
  • 项目类别:
    专项基金项目
pathway预测方法研究
  • 批准号:
    60873146
  • 批准年份:
    2008
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
Wnt pathway对大脑皮质桶发育调控机制的研究
  • 批准号:
    30770696
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Regulation of synaptic plasticity by the cyclic-AMP signalling pathway.
通过环AMP信号通路调节突触可塑性。
  • 批准号:
    RGPIN-2020-04443
  • 财政年份:
    2022
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Discovery Grants Program - Individual
Regulatory mechanisms for perisynaptic accumulation of mGluRs and synaptic plasticity via cytohesin-2 signaling pathway
通过 cytohesin-2 信号通路调节突触周围 mGluR 积累和突触可塑性的机制
  • 批准号:
    22K06461
  • 财政年份:
    2022
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulation of a Synaptic Pathway in Neuropsychiatric Disorders
神经精神疾病突触通路的调节
  • 批准号:
    445281
  • 财政年份:
    2021
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Operating Grants
Regulation of synaptic plasticity by the cyclic-AMP signalling pathway.
通过环AMP信号通路调节突触可塑性。
  • 批准号:
    RGPIN-2020-04443
  • 财政年份:
    2021
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Discovery Grants Program - Individual
Regulation of synaptic plasticity by the cyclic-AMP signalling pathway.
通过环AMP信号通路调节突触可塑性。
  • 批准号:
    RGPIN-2020-04443
  • 财政年份:
    2020
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of a Novel Viral-Like Signaling Pathway in Synaptic Plasticity and Neurological Disorders
新型病毒样信号通路在突触可塑性和神经系统疾病中的作用
  • 批准号:
    10640952
  • 财政年份:
    2019
  • 资助金额:
    $ 73.72万
  • 项目类别:
The exploration of the mechanistic pathway behind reelin's impact on synaptic strength
探索reelin影响突触强度的机制途径
  • 批准号:
    542698-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 73.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The role of a novel viral-like signalling pathway in synaptic plasticity and neurological disorders
新型病毒样信号通路在突触可塑性和神经系统疾病中的作用
  • 批准号:
    10430205
  • 财政年份:
    2019
  • 资助金额:
    $ 73.72万
  • 项目类别:
The role of a novel viral-like signalling pathway in synaptic plasticity and neurological disorders
新型病毒样信号通路在突触可塑性和神经系统疾病中的作用
  • 批准号:
    10187668
  • 财政年份:
    2019
  • 资助金额:
    $ 73.72万
  • 项目类别:
The role of a novel viral-like signalling pathway in synaptic plasticity and neurological disorders
新型病毒样信号通路在突触可塑性和神经系统疾病中的作用
  • 批准号:
    9802983
  • 财政年份:
    2019
  • 资助金额:
    $ 73.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了