EAGER: Exploiting Superior Electrochemical Characteristics of Scaled PEDOT:PSS Microelectrode Arrays for High Fidelity Electrocorticography
EAGER:利用规模化 PEDOT:PSS 微电极阵列的卓越电化学特性进行高保真皮质电图描记
基本信息
- 批准号:1743694
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Nontechnical: Electrophysiological clinical mapping of brain activity has high spatial resolution and high sensitivity that supersedes other noninvasive techniques such as functional magnetic resonance imaging (fMRI). This clinical procedure is important for a large population of patients with neurological disorders that either do not respond to drugs or have adverse side effects such as in medically intractable epilepsy. It also has promising applications in brain-machine interfaces. The majority of electrophysiological devices utilize noble metals as the contact interface with brain tissue, and these metal electrodes detect ionic currents and potentials by either surface redox reactions or capacitive charge screening. Organic electrodes on the other hand are permeable to ions and allow volumetric redox reactions and capacitive coupling of brain activity. This superior electrochemical performance allows organic electrodes to resolve minute potentials from the brain which has implications for better understanding and treatment of neurological diseases. But their superior characteristics fade with time due to instability of the bonding interface between the organic electrode and the underlying metal pads that carry the signals to the outside world. This project aims at improving the stability of these organic electrodes by developing novel fabrication procedures that can extend their superior performance for several years. Technical: This project combines expertise in electronic materials processing, electrophysiological recording from humans, and data analysis in order to develop new geometries of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate microelectrodes. Device geometries that can result in the lowest electrochemical impedances and highest electrochemical stability will be developed and characterized with accelerated aging experiments in-vitro. Impedance and cyclic current-voltage characterization will be monitored over the course of several weeks while the microelectrodes are immersed in saline solution at high temperatures. Surface and cross-section scanning electron microscopy and atomic force microscopy will be utilized to assess the morphological stability of these microelectrodes and will inform the device fabrication to develop stable interfaces. The research is integrated with an educational plan for students with a central focus on biomedical implant devices as well as on the burgeoning field of neuro-technology. The plan includes extensive education and training programs for undergraduate and graduate students, with an emphasis on minority, female, and other underrepresented groups. If successful, the devices will broadly impact how we understand the brain, diagnose diseased regions of the brain, and advance the development of brain implants potentially opening access to such information to broader societal populations.
摘要非技术性:脑活动的电生理临床标测具有高空间分辨率和高灵敏度,取代了其他非侵入性技术,如功能磁共振成像(FMRI)。对于大量对药物没有反应或有副作用的神经系统疾病患者来说,这一临床程序很重要,例如在药物难治性癫痫中。它在脑机接口方面也有很好的应用前景。大多数电生理设备使用贵金属作为与脑组织的接触界面,这些金属电极通过表面氧化还原反应或电容电荷屏蔽来检测离子电流和电位。另一方面,有机电极对离子具有渗透性,并允许体积氧化还原反应和大脑活动的电容耦合。这种优越的电化学性能使有机电极能够分解大脑的微小电位,这对更好地理解和治疗神经疾病具有重要意义。但由于有机电极和将信号传输到外部世界的底层金属焊盘之间的结合界面不稳定,它们的优越特性随着时间的推移而褪色。该项目旨在通过开发新的制造工艺来提高这些有机电极的稳定性,使其优越的性能可以延长几年。技术:该项目结合了电子材料加工、人体电生理记录和数据分析方面的专业知识,以开发新的几何形状的聚(3,4-乙二氧基噻吩基)聚苯乙烯磺酸盐微电极。可以产生最低的电化学阻抗和最高的电化学稳定性的器件几何形状将被开发出来,并通过体外加速老化实验来表征。当微电极在高温下浸泡在盐水溶液中时,将在几个星期的过程中监测阻抗和循环电流-电压特性。表面和横截面扫描电子显微镜和原子力显微镜将被用来评估这些微电极的形态稳定性,并将为器件制造提供信息,以形成稳定的界面。这项研究与一项针对学生的教育计划相结合,重点是生物医学植入设备以及新兴的神经技术领域。该计划包括为本科生和研究生提供广泛的教育和培训计划,重点是少数民族、女性和其他代表性不足的群体。如果成功,这些设备将广泛影响我们理解大脑的方式,诊断大脑的病变区域,并推动脑植入物的开发,可能会向更广泛的社会人群开放获取此类信息的途径。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shadi Dayeh其他文献
Stimulation acts to uncover microscale pathological changes induced by brain tumors
刺激作用于揭示由脑肿瘤引起的微观病理变化。
- DOI:
10.1016/j.brs.2024.12.322 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Angelique Paulk;Sydney Cash;Shadi Dayeh;Jessica Chang;Daniel Cahill - 通讯作者:
Daniel Cahill
A 2.5-20kSps in-Pixel Direct Digitization Front-End for ECoG with In-Stimulation Recording
用于带刺激记录的 ECoG 的 2.5-20kSps 像素内直接数字化前端
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aditi Jain;E. Fogleman;Paul Botros;Ritwik Vatsyayan;Corentin Pochet;Andrew M. Bourhis;Zhaoyi Liu;Suhas Chethan;Hanh;I. Galton;Shadi Dayeh;Drew A. Hall - 通讯作者:
Drew A. Hall
Electrocorticography microdisplay for high precision intraoperative brain mapping
用于高精度术中脑映射的皮质脑电图微显示器
- DOI:
10.1016/j.brs.2024.12.330 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Youngbin Tchoe;Tianhai Wu;Hong Sang U;David Roth;Dongwoo Kim;Jihwan Lee;Daniel Cleary;Patricia Pizarro;Karen Tonsfeldt;Keundong Lee;Po Chun Chen;Andrew Bourhis;Ian Galton;Brian Coughlin;Jimmy Yang;Angelique Paulk;Eric Halgren;Sydney Cash;Shadi Dayeh - 通讯作者:
Shadi Dayeh
Shadi Dayeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shadi Dayeh', 18)}}的其他基金
Force Sensing Surgical Forceps Using Novel Piezoelectric TFT Array for Robotic Surgery
使用新型压电 TFT 阵列的力传感手术钳用于机器人手术
- 批准号:
2114482 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
MsRI-EW: Workshop for Clinical Translation of Implantable Devices. To be Held Virtually, August 10-12, 2020.
MsRI-EW:植入式设备临床翻译研讨会。
- 批准号:
2034627 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Monolithically Integrated High-Power GaN Devices and Si CMOS Circuits for High Frequency and High Power Converter
用于高频和高功率转换器的单片集成高功率 GaN 器件和 Si CMOS 电路
- 批准号:
1711030 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SNM: Scalable Nanomanufacturing of Fab Compatible High-Density Nanowire Arrays for High-Throughput Drug Screening
SNM:用于高通量药物筛选的可扩展纳米制造兼容工厂的高密度纳米线阵列
- 批准号:
1728497 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I-Corps: Dimensional touch: pressure-sensitive touchscreens for mobile applications
I-Corps:维度触摸:适用于移动应用的压敏触摸屏
- 批准号:
1600329 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
In-situ Transmission Electron Microscopy Studies of Metal Contact with InGaAs Nanochannels: Correlating Interface Reactions with Properties
金属与 InGaAs 纳米通道接触的原位透射电子显微镜研究:将界面反应与性能相关联
- 批准号:
1503595 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: High Density Bio-Compatible Electro-Fluidic Neural Interfaces for Mapping the Brain
职业:用于绘制大脑图谱的高密度生物兼容电流体神经接口
- 批准号:
1351980 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
3-D Nanowire Heterostructures from Earth Abundant Materials by Low-cost Fabrication Process for High-efficiency Photoelectrochemical Hydrogen Generation
利用地球丰富的材料通过低成本制造工艺制备 3D 纳米线异质结构,用于高效光电化学制氢
- 批准号:
1236155 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 10万 - 项目类别:
Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
- 批准号:
2906887 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Studentship
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
- 批准号:
BB/Z514470/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
- 批准号:
EP/Y033981/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant