SNM: Scalable Nanomanufacturing of Fab Compatible High-Density Nanowire Arrays for High-Throughput Drug Screening

SNM:用于高通量药物筛选的可扩展纳米制造兼容工厂的高密度纳米线阵列

基本信息

  • 批准号:
    1728497
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Cells from living animals are very small, and yet measuring them and manipulating them are critical for producing new medical therapies. There are encouraging new methods to understand and control cells one at a time, but there really isn't now the technology to measure and control individually the thousands or millions of cells needed for a therapy. New approaches to individually measure and control cells using multiple nanoscopic devices are sorely needed. This award will study a method to control and measure many cells simultaneously. The base technology is a high-density platform of nanoscopic wires that interact with the cells in a culture system. The scalable nanomanufacturing of nanowire devices will make it possible to build "nanolab-on-a-chip" machines. Such tiny "laboratories", combined with a patient's own growing cells could create low-cost, predictive drug-screening platforms to accelerate drug discovery and personalized treatments. The project provides training opportunities for undergraduate, high school, and under-represented minority students in interdisciplinary research in materials science, engineering, and medicine. It augments and improves the course curriculum, and fosters a robust translational exchange with industry partners. The project aims to overcome the barriers in developing a nanowire array-based system that enables multi-use, non-destructive, high-sensitivity measurements in 3D networks that are not possible with patch-clamp, automated patch, or microelectrode array techniques. Human-derived neurons and cardiomyocytes, which are highly relevant human models for drug screening, are studied. The project explores nanoimprint lithography as a scalable nanomanufacturing method to develop a wafer-scale nanowire neurophysiology platform scalable to 8000 simultaneous data points for 250 wells with 32 nanowire electrodes each. This scalable fabrication method enables the integration of nanowires in high densities and large numbers in integrated systems that comprise on-chip acquisition and digitization electronics and microfluidic drug intervention channels and wells. Furthermore, new architectures of multiple height nanowires are devised for screening the effects of drugs from 3D neuronal and cardiomyocyte networks and fully integrate readout electronics with the nanowire sensors. Finally, all components on a single, low cost platform scalable to 1820 wells and 115,840 simultaneous measurement points are monolithically integrated and the platform validated with a panel of drugs at the Sanford Burnham Prebys Medical Discovery Institute and UC San Diego. These technical innovations should enable non-destructive intracellular potential measurements across the depth of a tissue.
活体动物的细胞非常小,但测量和操纵它们对于产生新的医学疗法至关重要。 有一些令人鼓舞的新方法可以一次了解和控制一个细胞,但现在还没有技术可以单独测量和控制治疗所需的数千或数百万个细胞。迫切需要使用多个纳米级设备单独测量和控制细胞的新方法。 该奖项将研究一种同时控制和测量许多细胞的方法。 基础技术是一个高密度的纳米级电线平台,与培养系统中的细胞相互作用。纳米线器件的可扩展纳米制造将使建造“芯片上纳米实验室”机器成为可能。这种微型“实验室”,结合患者自身的生长细胞,可以创造低成本、预测性的药物筛选平台,以加速药物发现和个性化治疗。该项目为本科生,高中生和代表性不足的少数民族学生提供材料科学,工程和医学跨学科研究的培训机会。它增强和改进了课程设置,并促进了与行业合作伙伴的强有力的翻译交流。该项目旨在克服开发基于纳米线阵列的系统的障碍,该系统能够在3D网络中实现多用途,非破坏性,高灵敏度的测量,而这些测量是膜片钳,自动贴片或微电极阵列技术无法实现的。人源性神经元和心肌细胞,这是高度相关的药物筛选的人类模型,进行了研究。该项目探讨了纳米压印光刻作为一种可扩展的纳米制造方法,以开发一个晶圆级纳米线神经生理学平台,可扩展到8000个同时数据点的250个威尔斯井,每个32个纳米线电极。这种可扩展的制造方法使得能够在集成系统中以高密度和大量集成纳米线,该集成系统包括芯片上采集和数字化电子器件以及微流体药物干预通道和威尔斯。此外,设计了多高度纳米线的新架构,用于从3D神经元和心肌细胞网络中筛选药物的作用,并将读出电子器件与纳米线传感器完全集成。最后,可扩展到1820个威尔斯孔和115,840个同时测量点的单个低成本平台上的所有组件都是单片集成的,并且该平台在Sanford Burnham Prebys医学发现研究所和UC San Diego用一组药物进行了验证。这些技术创新应该能够实现跨组织深度的非破坏性细胞内电位测量。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In vitro Differentiation of Human iPSC-derived Cardiovascular Progenitor Cells (iPSC-CVPCs)
  • DOI:
    10.21769/bioprotoc.3755
  • 发表时间:
    2020-09-20
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    D'Antonio-Chronowska, Agnieszka;D'Antonio, Matteo;Frazer, Kelly A.
  • 通讯作者:
    Frazer, Kelly A.
An Analytical Model for Dual Gate Piezoelectrically Sensitive ZnO Thin Film Transistors
双栅压电敏感ZnO薄膜晶体管的分析模型
  • DOI:
    10.1002/admt.202100224
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Oh, Hongseok;Dayeh, Shadi A.
  • 通讯作者:
    Dayeh, Shadi A.
Stimulus Driven Single Unit Activity From Micro-Electrocorticography
  • DOI:
    10.3389/fnins.2020.00055
  • 发表时间:
    2020-02-28
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Hermiz, John;Hossain, Lorraine;Gilja, Vikash
  • 通讯作者:
    Gilja, Vikash
Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease
  • DOI:
    10.7554/elife.48476
  • 发表时间:
    2019-11-20
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    D'Antonio, Matteo;Reyna, Joaquin;Frazer, Kelly A.
  • 通讯作者:
    Frazer, Kelly A.
Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfaces
  • DOI:
    10.1002/adfm.202112045
  • 发表时间:
    2022-02-25
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Lee,Sang Heon;Thunemann,Martin;Dayeh,Shadi A.
  • 通讯作者:
    Dayeh,Shadi A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shadi Dayeh其他文献

Stimulation acts to uncover microscale pathological changes induced by brain tumors
刺激作用于揭示由脑肿瘤引起的微观病理变化。
  • DOI:
    10.1016/j.brs.2024.12.322
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Angelique Paulk;Sydney Cash;Shadi Dayeh;Jessica Chang;Daniel Cahill
  • 通讯作者:
    Daniel Cahill
A 2.5-20kSps in-Pixel Direct Digitization Front-End for ECoG with In-Stimulation Recording
用于带刺激记录的 ECoG 的 2.5-20kSps 像素内直接数字化前端
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditi Jain;E. Fogleman;Paul Botros;Ritwik Vatsyayan;Corentin Pochet;Andrew M. Bourhis;Zhaoyi Liu;Suhas Chethan;Hanh;I. Galton;Shadi Dayeh;Drew A. Hall
  • 通讯作者:
    Drew A. Hall
Electrocorticography microdisplay for high precision intraoperative brain mapping
用于高精度术中脑映射的皮质脑电图微显示器
  • DOI:
    10.1016/j.brs.2024.12.330
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Youngbin Tchoe;Tianhai Wu;Hong Sang U;David Roth;Dongwoo Kim;Jihwan Lee;Daniel Cleary;Patricia Pizarro;Karen Tonsfeldt;Keundong Lee;Po Chun Chen;Andrew Bourhis;Ian Galton;Brian Coughlin;Jimmy Yang;Angelique Paulk;Eric Halgren;Sydney Cash;Shadi Dayeh
  • 通讯作者:
    Shadi Dayeh

Shadi Dayeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shadi Dayeh', 18)}}的其他基金

Force Sensing Surgical Forceps Using Novel Piezoelectric TFT Array for Robotic Surgery
使用新型压电 TFT 阵列的力传感手术钳用于机器人手术
  • 批准号:
    2114482
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
MsRI-EW: Workshop for Clinical Translation of Implantable Devices. To be Held Virtually, August 10-12, 2020.
MsRI-EW:植入式设备临床翻译研讨会。
  • 批准号:
    2034627
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
EAGER: Exploiting Superior Electrochemical Characteristics of Scaled PEDOT:PSS Microelectrode Arrays for High Fidelity Electrocorticography
EAGER:利用规模化 PEDOT:PSS 微电极阵列的卓越电化学特性进行高保真皮质电图描记
  • 批准号:
    1743694
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Monolithically Integrated High-Power GaN Devices and Si CMOS Circuits for High Frequency and High Power Converter
用于高频和高功率转换器的单片集成高功率 GaN 器件和 Si CMOS 电路
  • 批准号:
    1711030
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
I-Corps: Dimensional touch: pressure-sensitive touchscreens for mobile applications
I-Corps:维度触摸:适用于移动应用的压敏触摸屏
  • 批准号:
    1600329
  • 财政年份:
    2015
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
In-situ Transmission Electron Microscopy Studies of Metal Contact with InGaAs Nanochannels: Correlating Interface Reactions with Properties
金属与 InGaAs 纳米通道接触的原位透射电子显微镜研究:将界面反应与性能相关联
  • 批准号:
    1503595
  • 财政年份:
    2015
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: High Density Bio-Compatible Electro-Fluidic Neural Interfaces for Mapping the Brain
职业:用于绘制大脑图谱的高密度生物兼容电流体神经接口
  • 批准号:
    1351980
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
3-D Nanowire Heterostructures from Earth Abundant Materials by Low-cost Fabrication Process for High-efficiency Photoelectrochemical Hydrogen Generation
利用地球丰富的材料通过低成本制造工艺制备 3D 纳米线异质结构,用于高效光电化学制氢
  • 批准号:
    1236155
  • 财政年份:
    2012
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

SNM: Manufacturing Autonomy for Directed Evolution of Materials (MADE-Materials) for Robust, Scalable Nanomanufacturing
SNM:材料定向进化(MADE-Materials)的制造自主权,实现稳健、可扩展的纳米制造
  • 批准号:
    1727894
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Scalable Nanomanufacturing of Carbon Nanotube Sheet Wrapped Carbon Fibers for Low Density and High Strength Composites
SNM:用于低密度和高强度复合材料的碳纳米管片包裹碳纤维的可扩展纳米制造
  • 批准号:
    1636306
  • 财政年份:
    2017
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: High-Throughput Scalable Nanomanufacturing of High-Performance Organic Devices
SNM:高性能有机器件的高通量可扩展纳米制造
  • 批准号:
    1636385
  • 财政年份:
    2016
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Scalable Nanomanufacturing of 2D Electronic Materials and Devices Using Automated Exfoliation
SNM:使用自动剥离的二维电子材料和设备的可扩展纳米制造
  • 批准号:
    1636256
  • 财政年份:
    2016
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Robust Scalable Nanomanufacturing of Photonic Structures
SNM:稳健可扩展的光子结构纳米制造
  • 批准号:
    1530734
  • 财政年份:
    2015
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Scalable Volume-NanoManufacturing of Unique Nanoparticles by Nano-templated Printing, Deposition, and Exfoliation for Energy and Bio/Chemical Sensing
SNM:可扩展体积纳米通过纳米模板印刷、沉积和剥离制造独特的纳米颗粒,用于能源和生物/化学传感
  • 批准号:
    1449314
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Scalable Nanomanufacturing of Metasurfaces & Plasmonic Opto-Mechanical Systems
SNM:可扩展的超表面纳米制造
  • 批准号:
    1449397
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Three-Color Photolithography for Scalable, Large-Area, Low-Cost Nanomanufacturing
SNM:用于可扩展、大面积、低成本纳米制造的三色光刻
  • 批准号:
    1449309
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Scalable 3D Nanomanufacturing Combining Ultrafast Laser Processing and Directed Self-Assembly
SNM:结合超快激光加工和定向自组装的可扩展 3D 纳米制造
  • 批准号:
    1449305
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SNM: Scalable Nanomanufacturing Machine Based on Parallel Optical Antenna Array
SNM:基于并行光学天线阵列的可扩展纳米制造机器
  • 批准号:
    1120577
  • 财政年份:
    2011
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了