CAREER: Learning Smart Meter Data to Enhance Distribution Grid Modeling and Observability
职业:学习智能电表数据以增强配电网建模和可观测性
基本信息
- 批准号:2042314
- 负责人:
- 金额:$ 50.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to provide the theoretical and computational foundation that will allow unlocking the untapped potential of smart meters and radically enhance electric power distribution grid observability in both normal and outage conditions. The project will transform existing distribution grid modeling and monitoring that relies on costly sensors to a scalable and robust method using widely-deployed smart meters. The intellectual merits of the project include developing new optimization and probabilistic graph learning methods to enable data-driven real-time network modeling, rapid detection of large-scale outages, and robust distribution system state estimation. The broader impacts of the project include integrating power engineering education with data science through training professional workforce for data challenges, developing open-source datasets, and providing outreach to high-school students for interactive learning of smart grids. If successful, this project will provide U.S. utilities with better situational awareness at minimum sensor investment cost, thus saving millions of dollars, while promoting seamless integration of renewable energy, and enhancing grid resilience.The increasing deployment of smart meters extends monitoring capability to grid edges and provides unprecedented amounts of data. However, most utilities use smart meters for billing purposes only, without exploring insights or gaining actionable information from them because these data are limited to low-resolution and unsynchronized measurements. The proposed project will open a new venue to enable utilities to extract useful intelligence from smart meters through three major technical innovations: (1) Real-time topology identification, where the approach is to design a Laplacian-like matrix that can capture the physical network feature and leverage its inherent sparse structure to discover nodal connectivity even from low-quality measurements. For online parameter identification, a novel bottom-up optimization algorithm using only smart meter data is proposed. (2) A new graph learning approach that takes advantages of intrinsic conditional independencies among smart meters and other outage information sources to serve as a data fusion framework for fast, scalable, and accurate outage detection. (3) A multi-objective robust data recovery technique to minimize smart meter asynchrony error. A hierarchical reinforcement learning-aided method is proposed to overcome the scalability issue, and to enable joint primary-secondary distribution system state estimation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF CAREER项目旨在提供理论和计算基础,以释放智能电表未开发的潜力,并从根本上提高正常和停电条件下的配电网可观测性。该项目将把现有的配电网建模和监控从依赖昂贵的传感器转变为使用广泛部署的智能电表的可扩展和强大的方法。该项目的智力优势包括开发新的优化和概率图学习方法,以实现数据驱动的实时网络建模,快速检测大规模停电和鲁棒的配电系统状态估计。该项目的更广泛影响包括通过培训专业人员应对数据挑战,开发开源数据集,将电力工程教育与数据科学相结合,并为高中生提供智能电网互动学习的外展服务。如果成功,该项目将以最低的传感器投资成本为美国公用事业公司提供更好的态势感知,从而节省数百万美元,同时促进可再生能源的无缝集成,并增强电网弹性。智能电表的日益部署将监控能力扩展到电网边缘,并提供前所未有的数据量。然而,大多数公用事业公司仅将智能电表用于计费目的,而没有探索洞察力或从中获得可操作的信息,因为这些数据仅限于低分辨率和非同步测量。拟议项目将开辟一个新的场所,使公用事业能够通过三项主要技术创新从智能电表中提取有用的情报:(1)实时拓扑识别,方法是设计一个类似拉普拉斯的矩阵,可以捕获物理网络特征,并利用其固有的稀疏结构,即使从低质量的测量中也能发现节点连接。针对在线参数辨识问题,提出了一种仅利用智能电表数据的自底向上优化算法。(2)一种新的图学习方法,利用智能电表和其他停电信息源之间的内在条件独立性,作为快速,可扩展和准确的停电检测的数据融合框架。(3)一种多目标鲁棒数据恢复技术,以最大限度地减少智能电表的错误。提出了一种分层强化学习辅助方法,以克服可扩展性问题,并使联合初级-二级配电系统状态estimation.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distribution Grid Modeling Using Smart Meter Data
- DOI:10.1109/tpwrs.2021.3118004
- 发表时间:2021-02
- 期刊:
- 影响因子:6.6
- 作者:Yifei Guo;Yuxuan Yuan;Zhaoyu Wang
- 通讯作者:Yifei Guo;Yuxuan Yuan;Zhaoyu Wang
Multisource Data Fusion Outage Location in Distribution Systems via Probabilistic Graphical Models
- DOI:10.1109/tsg.2021.3128752
- 发表时间:2022-03
- 期刊:
- 影响因子:9.6
- 作者:Yuxuan Yuan;K. Dehghanpour;Zhaoyu Wang;Fankun Bu
- 通讯作者:Yuxuan Yuan;K. Dehghanpour;Zhaoyu Wang;Fankun Bu
Enriching Load Data Using Micro-PMUs and Smart Meters
使用微型 PMU 和智能电表丰富负载数据
- DOI:10.1109/tsg.2021.3101685
- 发表时间:2021
- 期刊:
- 影响因子:9.6
- 作者:Bu, Fankun;Dehghanpour, Kaveh;Wang, Zhaoyu
- 通讯作者:Wang, Zhaoyu
Mining Smart Meter Data to Enhance Distribution Grid Observability for Behind-the-Meter Load Control: Significantly improving system situational awareness and providing valuable insights
挖掘智能电表数据以增强配电网可观测性以实现电表后负荷控制:显着提高系统态势感知并提供有价值的见解
- DOI:10.1109/mele.2021.3093636
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Yuan, Yuxuan;Wang, Zhaoyu
- 通讯作者:Wang, Zhaoyu
Mitigating Smart Meter Asynchrony Error Via Multi-Objective Low Rank Matrix Recovery
- DOI:10.1109/tsg.2021.3088835
- 发表时间:2021-05
- 期刊:
- 影响因子:9.6
- 作者:Yuxuan Yuan;K. Dehghanpour;Zhaoyu Wang
- 通讯作者:Yuxuan Yuan;K. Dehghanpour;Zhaoyu Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhaoyu Wang其他文献
Atomically Thin, Ionic–Covalent Organic Nanosheets for Stable, High‐Performance Carbon Dioxide Electroreduction
原子薄的离子共价有机纳米片,用于稳定、高性能二氧化碳电还原
- DOI:
10.1002/adma.202110496 - 发表时间:
2022-08 - 期刊:
- 影响因子:29.4
- 作者:
Yun Song;Jun‐Jie Zhang;Yubing Dou;Zhaohua Zhu;Jianjun Su;Libei Huang;Weihua Guo;Xiaohu Cao;Le Cheng;Zonglong Zhu;Zhenhua Zhang;Xiaoyan Zhong;Dengtao Yang;Zhaoyu Wang;Ben Zhong Tang;Boris I. Yakobson;Ruquan Ye - 通讯作者:
Ruquan Ye
The effect and mechanism of closed double equal channel angular pressing deformation on He+ irradiation damage of low activation steel
闭式双等通道角挤压变形对低活化钢He辐照损伤的影响及机理
- DOI:
10.1016/j.fusengdes.2022.113358 - 发表时间:
2023-02 - 期刊:
- 影响因子:1.7
- 作者:
Ping Li;Jiren Dai;Lusheng Wang;Yufeng Zhou;Zhaoyu Wang;Kemin Xue - 通讯作者:
Kemin Xue
Experimental Study on Thermal Conductivity of Sand Solidified by Microbially Induced Calcium Carbonate Precipitation
微生物诱导碳酸钙沉淀固化砂导热系数实验研究
- DOI:
10.1088/1755-1315/304/5/052069 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jinhua Ding;Zhaoyu Wang;N. Zhang;P. Jiang;M. Peng;Y. Jin;Qi Li - 通讯作者:
Qi Li
Distribution Network Outage Data Analysis and Repair Time Prediction Using Deep Learning
使用深度学习进行配电网停电数据分析和修复时间预测
- DOI:
10.1109/pmaps.2018.8440354 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anmar I. Arif;Zhaoyu Wang - 通讯作者:
Zhaoyu Wang
A Linear Solution Method of Generalized Robust Chance Constrained Real-Time Dispatch
广义鲁棒机会约束实时调度的线性求解方法
- DOI:
10.1109/tpwrs.2018.2865184 - 发表时间:
2018-01 - 期刊:
- 影响因子:6.6
- 作者:
Anping Zhou;Ming Yang;Zhaoyu Wang;Peng Li - 通讯作者:
Peng Li
Zhaoyu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhaoyu Wang', 18)}}的其他基金
Data-Driven Voltage VAR Optimization Enabling Extreme Integration of Distributed Solar Energy
数据驱动的电压无功优化实现分布式太阳能的极致集成
- 批准号:
1929975 - 财政年份:2019
- 资助金额:
$ 50.07万 - 项目类别:
Standard Grant
EAGER: SSDIM: Simulated and Synthetic Data Generation for Interdependent Natural Gas and Electrical Power Systems Based on Graph Theory and Machine Learning
EAGER:SSDIM:基于图论和机器学习的相互依赖的天然气和电力系统的模拟和综合数据生成
- 批准号:
1745451 - 财政年份:2017
- 资助金额:
$ 50.07万 - 项目类别:
Standard Grant
Data-driven modeling, monitoring and mitigation of cascading outages in transmission and distribution systems
输配电系统级联停电的数据驱动建模、监控和缓解
- 批准号:
1609080 - 财政年份:2016
- 资助金额:
$ 50.07万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
- 批准号:
2401655 - 财政年份:2024
- 资助金额:
$ 50.07万 - 项目类别:
Standard Grant
Smart Integration of Process Systems Engineering & Machine Learning for Improved Process Safety in Process Industries (PROSAFE)
过程系统工程智能集成
- 批准号:
EP/Y037111/1 - 财政年份:2024
- 资助金额:
$ 50.07万 - 项目类别:
Research Grant
Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
- 批准号:
2342215 - 财政年份:2024
- 资助金额:
$ 50.07万 - 项目类别:
Continuing Grant
CAREER: Multiscale Simulation and Machine Learning for Smart Polymer Design
职业:智能聚合物设计的多尺度仿真和机器学习
- 批准号:
2237470 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Continuing Grant
FET/SHF: Small: Reinforcement learning and transformer inspired smart photonics inverse design
FET/SHF:小型:强化学习和变压器启发的智能光子逆设计
- 批准号:
2309403 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Standard Grant
STTR Phase I: Machine Learning-Based Smart Data Compression Solutions for Structural Health Monitoring Sensors
STTR 第一阶段:用于结构健康监测传感器的基于机器学习的智能数据压缩解决方案
- 批准号:
2321884 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Standard Grant
Smart control of cryogenic refrigerators using machine learning
使用机器学习智能控制低温冰箱
- 批准号:
22KF0297 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Machine learning based electric vehicle charging management system for smart grid applications
基于机器学习的电动汽车充电管理系统,适用于智能电网应用
- 批准号:
2879828 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Studentship
Real-time violence detection using smart camera stereovision video and efficient deep learning backbones
使用智能相机立体视觉视频和高效的深度学习主干进行实时暴力检测
- 批准号:
2877765 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Studentship
Microstructure-sensitive machine learning for smart metallurgical manufacture
用于智能冶金制造的微观结构敏感机器学习
- 批准号:
2896858 - 财政年份:2023
- 资助金额:
$ 50.07万 - 项目类别:
Studentship