CAREER: Artificial Muscle Based on Dielectric Elastomers for Dexterous and Compliant Prostheses
职业:基于介电弹性体的人造肌肉,用于灵巧且柔顺的假肢
基本信息
- 批准号:1747855
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) project has the main goal of realizing artificial muscle with mechanical and dynamic properties similar to natural muscle. In particular, this project considers the use of a class of materials called dielectric elastomers (DEs) that have compliance, resilience, and force per area comparable to biological muscles. Like biological muscles, these materials can be self-sensing, allowing precise control of contraction or extension without needing visual feedback or other auxiliary sensing schemes. The ultimate goal of the project is to achieve dexterous, lightweight, and energy-efficient prostheses using DE-based artificial muscles, in contrast to the heavy and inefficient electric motors of the current generation of robotic arms. The project incorporates aspects of bio-inspired design, device fabrication, and dynamic modeling, sensing, and control. The success of this project will help provide affordable, reliable, and comfortable prostheses to the estimated two million military veterans and civilians who have lost hands, arms, or legs to accidents, natural disasters, wars, diseases, or aging. This project will also train the next-generation workforce with skills in the dynamic modeling, control, and fabrication of devices based on smart materials and structures. Activities to attract students to this area of research will improve enrollment in science, technology, engineering, and mathematics (STEM) disciplines.The long-term goal of this research is to develop lightweight, compliant, and self-sensing DEs to emulate the actuation and sensing of biological muscles for robotic assistive applications. A first step towards this goal is to obtain bio-inspired design, modeling, self-sensing, and control strategies for DE actuators in a prosthetic hand application. This project will emphasize the following core goals: 1) create a novel artificial muscle structure consisting of a tubular DE artificial muscle attached to carbon fiber artificial tendons; 2) derive a low-order physics-based model capturing the nonlinear elasticity and strain-dependent electrical impedance of the DE actuator; (3) implement a sensitive and robust nonlinear state observer using actuator self-sensing of the strain-dependent electrical impedance; (4) derive a state-boundary avoidance control strategy to protect the DE actuator from damage; and (5) build a DE-enabled prosthetic hand to demonstrate dexterous manipulation with efficient, and compliant actuation.
该教师早期职业发展(CAREER)项目的主要目标是实现具有与天然肌肉相似的机械和动态特性的人工肌肉。特别是,该项目考虑使用一类称为介电弹性体(DE)的材料,这些材料具有与生物肌肉相当的顺应性、弹性和单位面积力。像生物肌肉一样,这些材料可以自我感知,允许精确控制收缩或伸展,而不需要视觉反馈或其他辅助传感方案。该项目的最终目标是使用基于DE的人工肌肉实现灵巧、轻便和节能的假肢,与当前一代机器人手臂的笨重和低效的电动马达形成对比。该项目结合了生物启发设计,设备制造,动态建模,传感和控制等方面。该项目的成功将有助于为约200万因事故、自然灾害、战争、疾病或衰老而失去手、臂或腿的退伍军人和平民提供负担得起、可靠和舒适的假肢。该项目还将培训下一代劳动力,掌握基于智能材料和结构的动态建模,控制和制造设备的技能。吸引学生进入这一研究领域的活动将提高科学、技术、工程和数学(STEM)学科的入学率。本研究的长期目标是开发轻量级、顺应性和自感知的DE,以模仿机器人辅助应用中生物肌肉的致动和感知。实现这一目标的第一步是获得生物启发的设计,建模,自感知和控制策略的DE执行器在假肢手的应用。本项目的核心目标是:1)建立一种新型的人工肌肉结构,该结构由管状DE人工肌肉和碳纤维人工肌腱组成; 2)建立一个基于低阶物理的模型,该模型描述了DE致动器的非线性弹性和应变相关电阻抗;(3)利用致动器对应变相关电阻抗的自感知,实现了一种灵敏的鲁棒非线性状态观测器;(4)推导出状态边界回避控制策略,以保护DE致动器免受损坏;以及(5)构建具有DE功能的假手,以展示具有高效且顺从的致动的灵巧操作。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Based Modeling of Dielectric Elastomer Enabled Cuff Device
基于物理的介电弹性体袖带装置建模
- DOI:10.23919/acc55779.2023.10156605
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kaaya, Theophilus;Venkatraman, Rahul J.;Chen, Zheng
- 通讯作者:Chen, Zheng
Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking
用于人体脉搏信号跟踪的介电弹性体隔膜执行器的鲁棒控制
- DOI:10.1088/1361-665x/aa75f7
- 发表时间:2017
- 期刊:
- 影响因子:4.1
- 作者:Ye, Zhihang;Chen, Zheng;Asmatulu, Ramazan;Chan, Hoyin
- 通讯作者:Chan, Hoyin
Design, fabrication, and characterization of dielectric elastomer actuator enabled cuff compression device
介电弹性体致动器启用袖带压缩装置的设计、制造和表征
- DOI:10.1117/12.2613250
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Venkatraman, Rahul;Kaaya, Theophilus;Tchipoque, Helio;Cluff, Kim;Asmatulu, Ramazan;Amick, Ryan;Chen, Zheng
- 通讯作者:Chen, Zheng
Modeling of jellyfish-inspired robot enabled by dielectric elastomer
- DOI:10.1007/s41315-021-00192-1
- 发表时间:2021-08
- 期刊:
- 影响因子:1.7
- 作者:Shengbin Wang;Zheng Chen
- 通讯作者:Shengbin Wang;Zheng Chen
Modeling and Control of Dielectric Elastomer Enabled Cuff Device for Enhancing Blood Flow at Lower Limbs
用于增强下肢血流的介电弹性体袖带装置的建模和控制
- DOI:10.1109/tase.2023.3325617
- 发表时间:2023
- 期刊:
- 影响因子:5.6
- 作者:Kaaya, Theophilus;Venkatraman, Rahul J.;Koc, Denizcan;Chen, Zheng
- 通讯作者:Chen, Zheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Chen其他文献
Enhanced hydrogen evolution activity over microwave-assisted functionalized 3D structured graphene anchoring FeP nanoparticles
微波辅助功能化 3D 结构石墨烯锚定 FeP 纳米粒子增强析氢活性
- DOI:
10.1016/j.electacta.2019.05.153 - 发表时间:
2019-09 - 期刊:
- 影响因子:6.6
- 作者:
Dourong Wang;Jiajia Lu;Lin Luo;Shengyu Jing;Hanna S. Abbo;Salam J.J. Titinchi;Zheng Chen;Panagiotis Tsiakaras;Shibin Yin - 通讯作者:
Shibin Yin
Research and Design of a LC-VCO for 3.125Gbps Serial Communication Applications
3.125Gbps串行通信应用LC-VCO的研究与设计
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jihai Duan;Sheng Huang;Zheng Chen;Weilin Xu - 通讯作者:
Weilin Xu
Association of IgE-mediated allergen sensitivity and promoter polymorphisms of chemokine (C–C motif) ligand 5 gene in Han Chinese patients with allergic skin diseases
中国汉族过敏性皮肤病患者IgE介导的过敏原敏感性与趋化因子(C-C基序)配体5基因启动子多态性的关系
- DOI:
10.1007/s13258-015-0274-5 - 发表时间:
2015 - 期刊:
- 影响因子:2.1
- 作者:
Ji;Yu;Zheng Chen;Shan He;Shi;Jun;Xiao;Chun;Bin Hou;Hui Yang - 通讯作者:
Hui Yang
TSSP: A Reinforcement Algorithm to Find Related Papers
TSSP:一种查找相关论文的强化算法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Shen Huang;Gui;Benyu Zhang;Zheng Chen;Yong Yu;Wei - 通讯作者:
Wei
Hierarchical {332} twinning in a metastable β Ti-alloy showing tolerance to strain localization
亚稳态 β 钛合金中的分层 {332} 孪晶表现出对应变局部化的耐受性
- DOI:
10.1080/21663831.2020.1745920 - 发表时间:
2020 - 期刊:
- 影响因子:8.3
- 作者:
Jinyong Zhang;Yangyang Fu;Yijin Wu;Bingnan Qian;Zheng Chen;Fan Sun;Ju Li;Frédéric Prima - 通讯作者:
Frédéric Prima
Zheng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng Chen', 18)}}的其他基金
PFI-TT: Next-Generation, Low-Cost, and Sustainable Recycling of Lithium-ion Batteries
PFI-TT:下一代、低成本、可持续的锂离子电池回收
- 批准号:
2213895 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
FMRG: Eco: Dry manufacturing of Solid-State Sodium Batteries for Energy STorage at large scale (S3-BEST)
FMRG:Eco:大规模储能用固态钠电池的干法制造(S3-BEST)
- 批准号:
2134764 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
GOALI: Understanding and Resolving the Compositional and Structural Defects in High-Energy Lithium-Ion Battery Cathodes
目标:了解并解决高能锂离子电池正极的成分和结构缺陷
- 批准号:
1805570 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Artificial Muscle Based on Dielectric Elastomers for Dexterous and Compliant Prostheses
职业:基于介电弹性体的人造肌肉,用于灵巧且柔顺的假肢
- 批准号:
1653301 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Elucidation of the mechanism of skeletal muscle failure caused by artificial sweeteners and dietary type, and verification of the effects of exercise
阐明人工甜味剂和饮食类型引起的骨骼肌衰竭的机制,并验证运动的效果
- 批准号:
23K10627 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Electrically Driven Artificial Muscle with Passive Flexibility Using Magnetic Spring
利用磁弹簧实现被动柔韧性的电驱动人工肌肉的研究
- 批准号:
23K13299 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research and development on a bipedal walking system with artificial spinal cord IC and artificial muscle
人工脊髓IC和人工肌肉双足行走系统的研发
- 批准号:
22K04016 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of sensor-composite fishing-line artificial muscle actuator and its physics-based modeling
传感器复合钓鱼线人工肌肉执行器的开发及其基于物理的建模
- 批准号:
21KK0253 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Dynamically reconfigurable wet robotics powered by self organization of molecular artificial muscle
由分子人造肌肉自组织驱动的动态可重构湿机器人
- 批准号:
22H04951 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Development of an early warning system for progression in non-muscle invasive bladder cancer patients using time-series forecasting with artificial intelligence
利用人工智能时间序列预测开发非肌肉浸润性膀胱癌患者进展早期预警系统
- 批准号:
466620 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship Programs
Artificial Intelligence Enabled Multi-Spectral Autofluorescence Imaging for Real-time Determination of Muscle in Bladder Tumor During Resection
人工智能支持多光谱自发荧光成像,可在切除过程中实时确定膀胱肿瘤中的肌肉
- 批准号:
10325131 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
An Artificial Intelligence Method for Auto-Compressed Sensing and Blind Deconvolution in Magnetic Resonance Imaging Data of Shoulder Muscle Metabolism
肩部肌肉代谢磁共振成像数据自动压缩感知和盲解卷积的人工智能方法
- 批准号:
2138142 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Fellowship Award
Silent Driven Robotic Hand using Liquid-Cooled Artificial Muscle Actuators
使用液冷人工肌肉执行器的静音驱动机械手
- 批准号:
20K21818 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of lightweight artificial muscle with polymer threads and carbon nanotube yarn towards true human support
使用聚合物线和碳纳米管纱线开发轻质人造肌肉,以实现真正的人体支撑
- 批准号:
19K21946 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)