EAGER: Uncertainty-aware Planning for Robot Navigation in Human Environments
EAGER:人类环境中机器人导航的不确定性感知规划
基本信息
- 批准号:1748541
- 负责人:
- 金额:$ 17.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robots are increasingly being integrated into society, from service robots to autonomous cars. To be both safe and efficient, however, they need to better understand how people navigate in unstructured environments and plan paths that take people's own paths into consideration. The planning methods developed in this project will generate robot paths that satisfy the dual goals of minimizing the robot's risks of collision with people while simultaneously minimizing its expected task completion time. Unique to this work, the robot dynamically estimates how predictable pedestrians are behaving at any point in time and adapts its plans accordingly, automatically taking safer, more conservative, paths when in less predictable situations, and emphasizing efficiency when the situation is more predictable. The ability for robots to autonomously plan and execute safe, efficient paths in human environments will improve their ability to operate in collaboration with humans, especially in crowded situations, such as in factories, schools, hospitals, or malls.The navigation method developed follows a sense-plan-predict-act loop where robot plans are computed by finding medium-to-long term trajectories that avoid collision with an expected future distribution of likely obstacle states. The goals of this work split into two tasks: The first improves existing pedestrian path-modeling techniques by augmenting the predictions with estimates of uncertainty. This is accomplished through an iterative maximum-likelihood framework. The second task finds robot trajectories that minimize a path-cost function, accounting for both control and collision costs, while respecting robot dynamics. This is done using an iterative, gradient-based trajectory optimization approach. The resulting navigation approach is evaluated in both simulation and on real pedestrian data.
从服务机器人到自动驾驶汽车,机器人越来越多地融入社会。 然而,为了既安全又高效,他们需要更好地了解人们如何在非结构化环境中导航,并考虑人们自己的路径来规划路径。 在这个项目中开发的规划方法将产生机器人路径,满足最大限度地减少机器人与人碰撞的风险,同时最大限度地减少其预期的任务完成时间的双重目标。这项工作的独特之处在于,机器人动态地估计可预测的行人在任何时间点的行为,并相应地调整其计划,在不可预测的情况下自动采取更安全,更保守的路径,并在情况更可预测时强调效率。 机器人在人类环境中自主规划和执行安全、有效路径的能力将提高它们与人类协作的能力,特别是在拥挤的情况下,如工厂、学校、医院、或商场。开发的导航方法遵循一个感知-计划-预测-行动循环,其中机器人计划通过找到中到避免与可能的障碍状态的预期未来分布碰撞的长期轨迹。这项工作的目标分为两个任务:第一个改进现有的行人路径建模技术,通过增加预测的不确定性估计。 这是通过迭代最大似然框架来实现的。第二个任务找到机器人轨迹,最大限度地减少路径成本函数,占控制和碰撞成本,同时尊重机器人动力学。这是使用迭代的、基于梯度的轨迹优化方法来完成的。 由此产生的导航方法进行评估,在模拟和真实的行人数据。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crowd space: a predictive crowd analysis technique
人群空间:预测人群分析技术
- DOI:10.1145/3272127.3275079
- 发表时间:2019
- 期刊:
- 影响因子:6.2
- 作者:Karamouzas, Ioannis;Sohre, Nick;Hu, Ran;Guy, Stephen J.
- 通讯作者:Guy, Stephen J.
Coordinating Multi-Agent Navigation by Learning Communication
通过学习通信来协调多代理导航
- DOI:10.1145/3340261
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Hildreth, Dalton;Guy, Stephen J.
- 通讯作者:Guy, Stephen J.
ALAN: adaptive learning for multi-agent navigation
ALAN:多智能体导航的自适应学习
- DOI:10.1007/s10514-018-9719-4
- 发表时间:2018
- 期刊:
- 影响因子:3.5
- 作者:Godoy, Julio;Chen, Tiannan;Guy, Stephen J.;Karamouzas, Ioannis;Gini, Maria
- 通讯作者:Gini, Maria
NH-TTC: A gradient-based framework for generalized anticipatory collision avoidance
NH-TTC:基于梯度的广义预期防撞框架
- DOI:10.15607/rss.2020.xvi.078
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Davis, Bobby;Karamouzas, Ioannis;Guy, Stephen J.
- 通讯作者:Guy, Stephen J.
SPNets: Human-like Navigation Behaviors with Uncertain Goals
SPNet:目标不确定的类人导航行为
- DOI:10.1145/3424636.3426911
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sohre, Nicholas;Guy, Stephen J.
- 通讯作者:Guy, Stephen J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Guy其他文献
Facilitating production of cell banks using an automated cryovial dispenser
- DOI:
10.1016/j.drudis.2011.10.012 - 发表时间:
2011-12-01 - 期刊:
- 影响因子:
- 作者:
Stephen Guy;Dave Thomas;Miriam Foster - 通讯作者:
Miriam Foster
Recurrent Staphylococcal Conjunctivitis Associated With Facial Impetigo Contagiosa
- DOI:
10.1016/j.ajo.2005.07.079 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Shane R. Durkin;Dinesh Selva;Shyamala C. Huilgol;Stephen Guy;Igal Leibovitch - 通讯作者:
Igal Leibovitch
Hyperprolactinaemia and antipsychotics
高催乳素血症和抗精神病药物
- DOI:
10.1192/apt.bp.113.012088 - 发表时间:
2015 - 期刊:
- 影响因子:1.3
- 作者:
J. C. Nelson;P. Bell;Stephen Guy - 通讯作者:
Stephen Guy
Doctor when can I drive? Braking response after knee arthroplasty: A systematic review & meta-analysis of brake reaction time
- DOI:
10.1016/j.knee.2021.03.013 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Vasileios Giannoudis;Stephen Guy;Richard Romano;Oliver Carsten;Hemant Pandit;Bernard van Duren - 通讯作者:
Bernard van Duren
Emergency laparotomy outcomes before and after the introduction of an acute surgical unit
- DOI:
10.1016/j.ijso.2017.12.001 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:
- 作者:
Stephen Guy;Carl Lisec - 通讯作者:
Carl Lisec
Stephen Guy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Guy', 18)}}的其他基金
CRII: CHS: Capturing Emergent Fine-Scale Features in Visual Simulation of Elasticity
CRII:CHS:捕捉弹性视觉模拟中出现的精细尺度特征
- 批准号:
1657089 - 财政年份:2017
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Uncertainty-aware sensing and management for IoT
职业:物联网的不确定性感知传感和管理
- 批准号:
2340049 - 财政年份:2024
- 资助金额:
$ 17.03万 - 项目类别:
Continuing Grant
Cross-Layer Uncertainty-Aware Reinforcement Learning for Safe Autonomous Driving
用于安全自动驾驶的跨层不确定性感知强化学习
- 批准号:
EP/Y002644/1 - 财政年份:2024
- 资助金额:
$ 17.03万 - 项目类别:
Research Grant
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:
10090795 - 财政年份:2024
- 资助金额:
$ 17.03万 - 项目类别:
EU-Funded
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2318758 - 财政年份:2023
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 17.03万 - 项目类别:
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2348046 - 财政年份:2023
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Dependable Predictive Inference with Uncertainty-Aware Machine Learning
通过不确定性感知机器学习进行可靠的预测推理
- 批准号:
2210637 - 财政年份:2022
- 资助金额:
$ 17.03万 - 项目类别:
Continuing Grant
Uncertainty-aware full-body motion planning of aerial and multi-legged robots for urban search and rescue operations
用于城市搜救行动的空中和多足机器人的不确定性全身运动规划
- 批准号:
560791-2020 - 财政年份:2022
- 资助金额:
$ 17.03万 - 项目类别:
Alliance Grants
Uncertainty Quantification for Probabilistic Stability Analysis and Uncertainty-Aware Control of Electric Power Systems
电力系统概率稳定性分析和不确定性感知控制的不确定性量化
- 批准号:
RGPIN-2022-03236 - 财政年份:2022
- 资助金额:
$ 17.03万 - 项目类别:
Discovery Grants Program - Individual
III: Medium: Collaborative Research: MUDL: Multidimensional Uncertainty-Aware Deep Learning Framework
III:媒介:协作研究:MUDL:多维不确定性感知深度学习框架
- 批准号:
2107449 - 财政年份:2021
- 资助金额:
$ 17.03万 - 项目类别:
Continuing Grant














{{item.name}}会员




