CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
基本信息
- 批准号:1751747
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this Faculty Early Career Development Program (CAREER) project is to create a set of novel optimization models and algorithms for the operation of future electric power systems. The approach is to (1) develop efficient and robust algorithms for optimizing power flow and power network topology, which will be significantly faster, more accurate, and more scalable than the state-of-the-art approaches; (2) develop new techniques for harnessing large amount of data for modeling uncertainties in power system; (3) develop decision making algorithms for the real-time operation of power systems with substantial renewable, demand response, and distributed generation resources. The intellectual merits of the project lie in (1) the development of new insights and understanding of some key mathematical structures of a broad class of hard optimization problems involving networks, which are intrinsic to optimal power flow, network topology control, and dynamic decision making, and (2) leveraging these mathematical understanding to design rigorous and efficient algorithms for the mentioned problems. If successful, this research will not only provide transformative technologies for the operations of power grid, but will also strengthen intellectual ties between power engineering and industrial & operations engineering. The project will directly benefit the society at large by creating the next generation of operational tools to manage the future power grids, to help reduce power system operational cost, and to increase power system reliability and flexibility. The methodological contributions of the project will provide new tools for applications beyond electric power systems, such as for the operation of water and natural-gas networks and coordination of interconnected energy systems. The PI will actively pursue opportunities to bring power industry, academia, government, and national labs together to form synergistic discussions and collaborations on developing analytical methods for electric energy systems. The PI will also develop new education curriculum and outreach activities to contribute to the development of a new generation of multidisciplinary workforce for the nation's infrastructure industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学院早期职业发展计划(CALEAR)项目的目标是为未来电力系统的运行创造一套新的优化模型和算法。方法是(1)开发高效和健壮的优化潮流和电网拓扑的算法,比最先进的方法更快、更准确、更具可扩展性;(2)开发新的技术来利用大量数据来建模电力系统中的不确定性;(3)开发具有大量可再生、需求响应和分布式发电资源的电力系统实时运行的决策算法。该项目的智力优势在于(1)对涉及网络的一大类困难优化问题的一些关键数学结构有了新的见解和理解,这些问题是最优潮流、网络拓扑控制和动态决策的内在原因,以及(2)利用这些数学知识为上述问题设计严格而有效的算法。如果成功,这项研究不仅将为电网运营提供变革性技术,还将加强电力工程与工业与电力运营工程之间的智力联系。该项目将通过创造下一代运行工具来管理未来的电网,帮助降低电力系统运行成本,并提高电力系统的可靠性和灵活性,从而直接造福于整个社会。该项目的方法学贡献将为电力系统以外的应用提供新的工具,例如水和天然气网络的运行以及相互关联的能源系统的协调。国际电力协会将积极寻求机会,将电力行业、学术界、政府和国家实验室聚集在一起,就开发电力系统分析方法进行协同讨论和合作。PI还将开发新的教育课程和推广活动,为国家基础设施行业发展新一代多学科劳动力做出贡献。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming
- DOI:10.1109/tpwrs.2018.2880996
- 发表时间:2019-05
- 期刊:
- 影响因子:6.6
- 作者:Jikai Zou;Shabbir Ahmed;X. Sun
- 通讯作者:Jikai Zou;Shabbir Ahmed;X. Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xu Sun其他文献
Softening Behaviors of Severely Deformed Zn Alloy Studied by the Nanoindentation
纳米压痕研究严重变形锌合金的软化行为
- DOI:
10.3390/coatings10090803 - 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
Jiangjiang Hu;Shuo Sun;Wei Zhang;Guangjian Peng;Shuang Han;Xu Sun;Yusheng Zhang;Taihua Zhang - 通讯作者:
Taihua Zhang
Chinese Abbreviation Identification Using Abbreviation-Template Features *
使用缩写模板特征进行中文缩写识别 *
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xu Sun;Houfeng Wang - 通讯作者:
Houfeng Wang
Serious BTEX pollution in rural area of the North China Plain during winter season.
冬季华北平原农村地区苯系物污染严重。
- DOI:
10.1016/j.jes.2014.05.056 - 发表时间:
2015-04 - 期刊:
- 影响因子:6.9
- 作者:
Hongxing Zhang;Gen Zhang;Xu Sun;Yujing Mu - 通讯作者:
Yujing Mu
Amorphous Co-doped MoOx Nanospheres with Core-Shell Structure Toward Effective Oxygen Evolution Reaction
具有核壳结构的非晶共掺杂 MoOx 纳米球可实现有效的析氧反应
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chengying Guo;Xu Sun;Xuan Kuang;Lingfeng Gao;Mingzhu Zhao;Liu Qu;Yong Zhang;Dan Wu;Xiang Ren;Qin Wei - 通讯作者:
Qin Wei
Cardiac troponin I photoelectrochemical sensor: {Mo368} as electrode donor for Bi2S3 and Au co-sensitized FeOOH composite.
心肌肌钙蛋白 I 光电化学传感器:{Mo368} 作为 Bi2S3 和 Au 共敏 FeOOH 复合材料的电极供体。
- DOI:
10.1016/j.bios.2020.112157 - 发表时间:
2020-03 - 期刊:
- 影响因子:12.6
- 作者:
Chunzhu Bao;Xin Liu;Xinrong Shao;Xiang Ren;Yong Zhang;Xu Sun;Dawei Fan;Qin Wei;Huangxian Ju - 通讯作者:
Huangxian Ju
Xu Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xu Sun', 18)}}的其他基金
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
- 批准号:
2238359 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
- 批准号:
2238415 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
- 批准号:
2238047 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Machine Learning for Data-Driven Fault-Tolerant Control of Complex Systems
职业:用于复杂系统数据驱动容错控制的机器学习
- 批准号:
2426614 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
- 批准号:
2239859 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
- 批准号:
2237696 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant














{{item.name}}会员




