CAREER: Statistical Mechanics of Slender Structures

职业:细长结构的统计力学

基本信息

  • 批准号:
    1752100
  • 负责人:
  • 金额:
    $ 56.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research and education to advance understanding of mechanics how mechanical devices work at microscopic length scales down to the scale of nanostructures. Nature's fascinating ability to make nanomachines that can sense and respond to their environment has motivated researchers to explore different ways of miniaturizing functional devices. One of the strategies that was successfully employed is to make patterned /composite atomic layers, which can be prepared in a flat state and can subsequently transform their shapes in response to external stimuli. By using ideas from the folding of paper origami, researchers have produced functional self-folding origami micro-devices, which can perform biopsies and deliver drugs. Similarly, the ideas from paper kirigami and pop-up cards have led researchers to design micro-scale stretchable electronics and extremely sensitive force sensors. Functional micro-rockets have been employed for manipulation and isolation of cells and for diverse environmental applications, including water monitoring, remediation and detoxification.As devices are made smaller and smaller, their mechanics will become increasingly sensitive to imperfections and random fluctuations coming from the environment. For example, random imperfections transform flat atomic layers into shapes reminiscent of crumpled paper, while random thermal agitations can spontaneously crush spherical shells above some critical temperature. These effects can defy intuition based on the mechanics of macroscopic structures. This makes it challenging to design functional micro- and nano-structures. The PI aims to develop a theoretical and computational framework to investigate the mechanics of complex microscopic slender structures in the presence of defects and random fluctuations. The research will illuminate how biological structures function, to design novel electronic structures that can be tuned mechanically, and the design of microscopic structures that are prepared in a flat state and can subsequently self-fold to desired shapes with potential for biomedical devices and diverse environmental and industrial applications.The research proposed here will help educate the next generation of interdisciplinary scientists whose expertise resides at the intersection of continuum mechanics, statistical mechanics, and biology. Moreover, courses in continuum mechanics are typically taught from an engineering perspective and are very rarely attended by students with interests in biology and statistical mechanics. To address this issue, the PI has developed a new graduate course titled "Lessons from Biology for Engineering Tiny Devices" and will add new topics to the required sophomore engineering course on continuum mechanics. This award also supports educating, inspiring and mentoring high school students from underrepresented and socioeconomically disadvantaged populations in Trenton, NJ. The public will be reached with a new educational blog that will cover topics at the interface of biology, physics, mechanics and engineering.TECHNICAL SUMMARYThis CAREER award supports a theoretical and computational study integrated with education of how thermal fluctuations, nonequilibrium fluctuations, and disorder affect the mechanics of microscopic slender structures. The research agenda is motivated by the importance of biological microscopic shells and by recent experimental developments, where atomically thin layers of materials of various shapes and compositions are now routinely produced. Experimentalists can make highly stretchable graphene kirigami devices and composite/patterned atomic layers which can transform their shapes in response to external stimuli. However,, theory cannot describe the mechanics of thermalized or disordered flat sheets beyond their linear response to external forces. Less is known about the statistical mechanics of shells. The goal of this project is to bridge the gap between theory and experiments.This project will develop a theoretical framework and simulation tools that will enable studies of the mechanics of structures with complex geometries in the presence of thermal fluctuations, nonequilibrium fluctuations, and quenched defects. The basis for the development of coarse-grained finite-element molecular dynamics simulations, will be studies of small elements of three different types: flat sheets, curved shells and frustrated sheets. The effective static and dynamic stress-strain responses for such patches due to combination of loading, such as bending, stretching, shearing, in the presence of fluctuations will be studied by developing new renormalization group calculations, with defects treated using the replica approach. The PI will seek quantitative differences between the role of defects and of thermal and nonequilibrium fluctuations, which could be reflected in different universal exponents in the nonlinear regime of static stress-strain curves, as well as in different rate-dependent responses to dynamic loads. Mechanical properties are expected to depend critically on geometry, and three different types of patches - flat sheets, curved shells, and frustrated sheets - are expected to exhibit qualitatively different behaviors, for example fluctuations can stabilize flat sheets, but they reduce the stability of shells. Based on these studies the PI will develop coarse-grained simulation tools that will enable studies of the statistical mechanics of structures with complex geometries. The award will have direct implication for the mechanics of biological structures, for the design of novel electronic structures that can be tuned mechanically, and for the design of microscopic structures that are prepared in a flat state and can subsequently self-fold to desired shapes with potential for biomedical devices and diverse environmental and industrial applications.The research proposed here will help educate the next generation of interdisciplinary scientists whose expertise resides at the intersection of continuum mechanics, statistical mechanics, and biology. Moreover, courses in continuum mechanics are typically taught from an engineering perspective and are very rarely attended by students with interests in biology and statistical mechanics. To address this issue, the PI has developed a new graduate course titled "Lessons from Biology for Engineering Tiny Devices" and will add new topics to the required sophomore engineering course on continuum mechanics. This award also supports educating, inspiring and mentoring high school students from underrepresented and socioeconomically disadvantaged populations in Trenton, NJ. The public will be reached with a new educational blog that will cover topics at the interface of biology, physics, mechanics and engineering.
非技术摘要该职业奖支持理论和计算研究和教育,以增进对机械装置如何在微观长度尺度(小至纳米结构尺度)下工作的理解。大自然具有制造能够感知和响应环境的纳米机器的迷人能力,这促使研究人员探索微型化功能设备的不同方法。成功采用的策略之一是制造图案化/复合原子层,其可以在平坦状态下制备,并且随后可以响应外部刺激而改变其形状。通过利用折纸折叠的想法,研究人员生产出了功能性自折叠折纸微型设备,可以进行活组织检查和输送药物。同样,纸剪纸和弹出卡片的想法促使研究人员设计出微型可拉伸电子设备和极其灵敏的力传感器。功能性微型火箭已被用于细胞的操纵和分离以及各种环境应用,包括水监测、修复和解毒。随着设备变得越来越小,它们的机械结构将对来自环境的缺陷和随机波动变得越来越敏感。例如,随机缺陷将平坦的原子层转变为让人想起皱巴巴的纸的形状,而随机的热搅拌可以在高于某个临界温度时自发地压碎球壳。这些效应可能违背基于宏观结构力学的直觉。这使得设计功能性微米和纳米结构变得具有挑战性。该 PI 旨在开发一个理论和计算框架,以研究存在缺陷和随机波动的复杂微观细长结构的力学。该研究将阐明生物结构如何发挥作用,设计可机械调节的新颖电子结构,以及设计在平坦状态下制备并随后可自折叠成所需形状的微观结构,从而具有生物医学设备以及各种环境和工业应用的潜力。此处提出的研究将有助于教育下一代跨学科科学家,他们的专业知识在于连续介质力学、统计的交叉点 力学、生物学。此外,连续介质力学课程通常是从工程角度讲授的,对生物学和统计力学感兴趣的学生很少参加。为了解决这个问题,PI 开发了一个新的研究生课程,名为“微型设备工程生物学课程”,并将在大二工程课程所需的连续介质力学中添加新主题。该奖项还支持教育、激励和指导新泽西州特伦顿的代表性不足和社会经济弱势群体的高中生。公众将看到一个新的教育博客,该博客将涵盖生物​​学、物理学、力学和工程学的交叉主题。技术摘要该职业奖支持理论和计算研究,并结合热波动、非平衡波动和无序如何影响微观细长结构力学的教育。该研究议程的动机是生物微观壳的重要性和最近的实验发展,其中现在常规生产各种形状和成分的原子薄层材料。实验者可以制作高度可拉伸的石墨烯剪纸装置和复合/图案化原子层,这些原子层可以根据外部刺激改变其形状。然而,除了对外力的线性响应之外,理论无法描述热化或无序平板的力学。人们对壳的统计力学知之甚少。该项目的目标是弥合理论和实验之间的差距。该项目将开发一个理论框架和模拟工具,以便研究存在热波动、非平衡波动和淬火缺陷的复杂几何结构的力学。粗粒度有限元分子动力学模拟发展的基础将是对三种不同类型的小单元的研究:平板、弯曲壳和受挫板。在存在波动的情况下,由于弯曲、拉伸、剪切等载荷组合,将通过开发新的重正化群计算来研究此类补丁的有效静态和动态应力应变响应,并使用复制方法处理缺陷。 PI 将寻求缺陷作用与热波动和非平衡波动之间的定量差异,这可以反映在静态应力-应变曲线非线性区域的不同通用指数中,以及对动态载荷的不同速率相关响应中。机械性能预计主要取决于几何形状,并且三种不同类型的贴片(平板、弯曲壳和受挫板)预计会表现出性质不同的行为,例如波动可以稳定平板,但会降低壳的稳定性。基于这些研究,PI 将开发粗粒度模拟工具,以便研究具有复杂几何形状的结构的统计力学。该奖项将直接影响生物结构的力学、可机械调节的新型电子结构的设计,以及在平面状态下制备并随后可自折叠成所需形状的微观结构的设计,这些结构具有生物医学设备以及各种环境和工业应用的潜力。这里提出的研究将有助于教育下一代跨学科科学家,他们的专业知识位于交叉学科的交叉点 连续介质力学、统计力学和生物学。此外,连续介质力学课程通常是从工程角度讲授的,对生物学和统计力学感兴趣的学生很少参加。为了解决这个问题,PI 开发了一个新的研究生课程,名为“微型设备工程生物学课程”,并将在大二工程课程所需的连续介质力学中添加新主题。该奖项还支持教育、激励和指导新泽西州特伦顿的代表性不足和社会经济弱势群体的高中生。公众将通过一个新的教育博客来接触,该博客将涵盖生物​​学、物理学、力学和工程学等领域的主题。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Buckling of thermalized elastic sheets
热化弹性片材的屈曲
  • DOI:
    10.1016/j.jmps.2021.104296
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Morshedifard, Ali;Ruiz-García, Miguel;Abdolhosseini Qomi, Mohammad Javad;Košmrlj, Andrej
  • 通讯作者:
    Košmrlj, Andrej
Finite Temperature Phase Behavior of Viral Capsids as Oriented Particle Shells
  • DOI:
    10.1103/physrevlett.124.158101
  • 发表时间:
    2020-04-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Singh, Amit R.;Kosmrlj, Andrej;Bruinsma, Robijn
  • 通讯作者:
    Bruinsma, Robijn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrej Kosmrlj其他文献

Continuum theory for cluster morphologies of soft colloids.
软胶体簇形态的连续体理论。
  • DOI:
    10.1021/jp108806v
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrej Kosmrlj;G. Pauschenwein;Gerhard Kahl;P. Ziherl
  • 通讯作者:
    P. Ziherl

Andrej Kosmrlj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
  • 批准号:
    2238423
  • 财政年份:
    2023
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Mechanics of Cellular Structures
职业:细胞结构的统计力学
  • 批准号:
    2046683
  • 财政年份:
    2021
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Statistical mechanics and knot theory in algebraic combinatorics
职业:代数组合中的统计力学和纽结理论
  • 批准号:
    2046915
  • 财政年份:
    2021
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Research and training in advanced computational methods for quantum and statistical mechanics
职业:量子和统计力学高级计算方法的研究和培训
  • 批准号:
    1454939
  • 财政年份:
    2015
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Halting Problems In Statistical Mechanics
职业:解决统计力学中的问题
  • 批准号:
    1455272
  • 财政年份:
    2015
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Statistical mechanics of superconductors and other macroscopic phenomena
职业:超导体和其他宏观现象的统计力学
  • 批准号:
    1254791
  • 财政年份:
    2013
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Designing quantum computers and understanding glassy systems using numerical simulations and statistical mechanics
职业:使用数值模拟和统计力学设计量子计算机并理解玻璃系统
  • 批准号:
    1151387
  • 财政年份:
    2012
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: The Statistical Mechanics of Filamentous Assemblies
职业:丝状组件的统计力学
  • 批准号:
    0955760
  • 财政年份:
    2010
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
CAREER: Dynamics and Statistical Mechanics of Multicomponent Quantum Fluids
职业:多组分量子流体的动力学和统计力学
  • 批准号:
    0846788
  • 财政年份:
    2009
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Standard Grant
CAREER: Statistical Mechanics of Particulate Systems Far from Equilibrium
职业:远离平衡的颗粒系统的统计力学
  • 批准号:
    0239504
  • 财政年份:
    2003
  • 资助金额:
    $ 56.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了