Advanced Integrated Design Optimization Method to Realize Ultrasonic-Phase-Change Actuated Soft Materials

先进的集成设计优化方法实现超声波相变驱动软材料

基本信息

  • 批准号:
    1762530
  • 负责人:
  • 金额:
    $ 55.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to enable the optimal design and fabrication of a material for soft robotic applications. Soft robots have potential for functionality, versatility, adaptability, and safety exceeding that of traditional robotic systems. However, it is challenging to create materials capable of supplying the forces and motion required for soft robotics. This research will create a new method for optimally designing and fabricating advanced shape-changing materials that can be used in soft robotic applications. Like in biological systems, shape change will be encoded within the architecture of the material system. The design technique to be pioneered in this research will establish this encoding in a manner tailored to the specific robotic system problem. Outcomes of this study will enable more advanced soft robotic systems with capabilities beyond what is possible with current technology. This research will enable to novel technologies such as micro-robotic vehicles, bio-inspired soft robots, and micro-propulsion devices. The project will prepare students for careers designing and optimizing advanced soft robotic systems. It also will yield new educational modules to promote training in this area.The objective of this research is to create an optimization method to enable a tailored design of soft material and soft robotic systems based on a novel actuation modality. The research approach is to formulate multi-scale topology optimization for designing a soft material system with different sizes and geometries of embedded fluid cavities that change phase when certain cavities undergo local resonances induced by propagating narrowband ultrasonic waves. Five primary research tasks will be investigated. First, this project will begin with multi-physics modeling to characterize the constitutive relationship that governs ultrasonic wave excitation with phase-change actuation, considering different geometries and material properties of the soft structure, cavities, and in-fill liquid. Second, multi-scale topology optimization will be formulated, and coupled with the finite element model from the first task, for designing the material architecture to optimize for desired shape change. Third, additive manufacturing coupled with liquid infill during prototyping will enable the realization of these optimized multi-scale structures. This will then be experimentally validated for shape change by ultrasonic-phase-change. Having demonstrated proof-of-concept and fourth, multi-objective topology optimization will output solutions that will enable the entire structure to attain multiple states of motions (i.e., displacement positions, such as various degrees and angles of bending of a long, slender structure). The final task integrates the advances from all previous tasks to fabricate optimized, multi-phase, soft prototypes that can be actuated to achieve different motions. This project will lead to the first multi-scale topology optimization for smart material-structural systems, linking directly the actuation material design to achieve the desired motion at the structural scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是实现软机器人应用材料的最佳设计和制造。软机器人具有超越传统机器人系统的功能性、多功能性、适应性和安全性的潜力。然而,创造能够提供软机器人所需的力和运动的材料是具有挑战性的。这项研究将为优化设计和制造可用于软机器人应用的先进变形材料创造一种新方法。就像在生物系统中一样,形状的变化将被编码在物质系统的结构中。在这项研究中开创的设计技术将建立这种编码的方式适合于特定的机器人系统的问题。这项研究的结果将使更先进的软机器人系统的能力超越目前的技术。这项研究将使新技术,如微型机器人车辆,生物启发的软机器人和微推进装置。该项目将为学生的职业生涯做好准备,设计和优化先进的软机器人系统。它也将产生新的教育模块,以促进在这一领域的培训。本研究的目的是创建一个优化方法,使软材料和软机器人系统的定制设计的基础上,一种新的驱动方式。该研究方法是制定多尺度拓扑优化设计的软材料系统具有不同的尺寸和几何形状的嵌入式流体腔,改变相位时,某些腔进行传播窄带超声波引起的局部共振。将研究五个主要研究课题。首先,该项目将开始与多物理建模,以表征本构关系,支配超声波激励与相变驱动,考虑不同的几何形状和材料特性的软结构,空腔,和填充液体。其次,将制定多尺度拓扑优化,并与第一个任务的有限元模型相结合,用于设计材料结构,以优化所需的形状变化。第三,在原型制作过程中,增材制造与液体填充相结合,将使这些优化的多尺度结构得以实现。然后,这将通过超声相变的形状变化进行实验验证。已经证明了概念验证,第四,多目标拓扑优化将输出使整个结构能够获得多个运动状态(即,位移位置,例如细长结构的各种弯曲度和角度)。最后一项任务整合了所有先前任务的进展,以制造优化的、多阶段的、可被驱动以实现不同运动的软原型。该项目将导致智能材料结构系统的第一个多尺度拓扑优化,直接连接驱动材料设计,以实现在结构规模所需的运动。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft material actuation by atomization
  • DOI:
    10.1088/1361-665x/aaf5a1
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Han-Joo Lee;K. Loh
  • 通讯作者:
    Han-Joo Lee;K. Loh
Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate
  • DOI:
    10.3390/app11188350
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Guerra-Bravo, Esteban;Lee, Han-Joo;Loh, Kenneth J.
  • 通讯作者:
    Loh, Kenneth J.
A level set shape metamorphosis with mechanical constraints for geometrically graded microstructures
Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method
  • DOI:
    10.1007/s11837-020-04046-2
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Lei Li;Zongliang Du;H. Kim
  • 通讯作者:
    Lei Li;Zongliang Du;H. Kim
Connecting Microstructures for Multiscale Topology Optimization With Connectivity Index Constraints
  • DOI:
    10.1115/1.4041176
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zongliang Du;Xiao-Yi Zhou;R. Picelli;H. Kim
  • 通讯作者:
    Zongliang Du;Xiao-Yi Zhou;R. Picelli;H. Kim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Loh其他文献

Kenneth Loh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Loh', 18)}}的其他基金

Planning Grant: Engineering Research Center for Computing Yourself to be Better - Engineering for Revolutionizing Medical Decision-making (CYBER-MD)
规划资助:计算自己变得更好的工程研究中心 - 革命性医疗决策的工程(CYBER-MD)
  • 批准号:
    1840566
  • 财政年份:
    2018
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
REU Site: Designing for Safety and Safety by Design
REU 站点:安全设计和设计安全
  • 批准号:
    1757994
  • 财政年份:
    2018
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on the Electro-Mechanical Behavior of Multifunctional Structural Coatings
职业:多功能结构涂层机电行为的综合研究和教育
  • 批准号:
    1632305
  • 财政年份:
    2016
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
Scour Monitoring and Failure Prediction for Safe and Resilient Transportation Infrastructures
安全、有弹性的交通基础设施的冲刷监测和故障预测
  • 批准号:
    1639769
  • 财政年份:
    2016
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on the Electro-Mechanical Behavior of Multifunctional Structural Coatings
职业:多功能结构涂层机电行为的综合研究和教育
  • 批准号:
    1253564
  • 财政年份:
    2013
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Wind Turbine Blade and Tower Health Monitoring and Failure Prognosis
合作研究:集成风力涡轮机叶片和塔架健康监测和故障预测
  • 批准号:
    1200521
  • 财政年份:
    2012
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
Scour Monitoring and Failure Prediction for Safe and Resilient Transportation Infrastructures
安全、有弹性的交通基础设施的冲刷监测和故障预测
  • 批准号:
    1234080
  • 财政年份:
    2012
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
Bio-Inspired Sensing using Optoelectronic Nanocomposites (BISON)
使用光电纳米复合材料的仿生传感 (BISON)
  • 批准号:
    1031754
  • 财政年份:
    2010
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
  • 批准号:
    0508623
  • 财政年份:
    2005
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Fellowship

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

SUNRISE: Safe and sUstainable by desigN: IntegRated approaches for Impact aSsessment of advanced matErials
SUNRISE:安全且可持续的设计:先进材料影响评估的综合方法
  • 批准号:
    10103630
  • 财政年份:
    2024
  • 资助金额:
    $ 55.61万
  • 项目类别:
    EU-Funded
Phase II IUCRC at University of Illinois at Chicago: Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM)
伊利诺伊大学芝加哥分校的 II 期 IUCRC:集成微流体先进设计与制造中心 (CADMIM)
  • 批准号:
    1841473
  • 财政年份:
    2019
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Continuing Grant
Phase II IUCRC at University of California, Irvine: Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM)
加州大学欧文分校的 II 期 IUCRC:集成微流体先进设计与制造中心 (CADMIM)
  • 批准号:
    1841509
  • 财政年份:
    2019
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Continuing Grant
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
  • 批准号:
    1853174
  • 财政年份:
    2018
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
I/UCRC: Center for Advanced Design and Manufacturing of Integrated Microfluidics (CADMIM)
I/UCRC:集成微流体先进设计与制造中心 (CADMIM)
  • 批准号:
    1738617
  • 财政年份:
    2016
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Continuing Grant
Advanced interior point techniques for placement, routing and floorplanning problems arising in integrated circuit design
先进的内点技术,解决集成电路设计中出现的布局、布线和布局规划问题
  • 批准号:
    44456-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Discovery Grants Program - Individual
Synergistic Synthesis Methodologies and Computer-Aided Design Tools for Analog and RF Integrated Circuits in Advanced Technologies
先进技术中模拟和射频集成电路的协同综合方法和计算机辅助设计工具
  • 批准号:
    342185-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
  • 批准号:
    1508907
  • 财政年份:
    2015
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
  • 批准号:
    1509762
  • 财政年份:
    2015
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了