Scalable Nanomanufacturing of Large-area Two-dimensional Tellurene for High-performance Wearable Piezoelectric Devices
用于高性能可穿戴压电器件的大面积二维碲烯的可扩展纳米制造
基本信息
- 批准号:1762698
- 负责人:
- 金额:$ 41.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Piezoelectric nanomaterials convert mechanical signals into electrical power and promise to revolutionize emerging self-powered technologies. Current methods for making piezoelectric nanomaterials are restricted by growth substrates, reaction pressure and temperature, which limits their economic manufacture. This award supports fundamental research to provide needed knowledge for the development of a low-temperature, substrate-free, scalable nanomanufacturing process. The novel process involves solution-based nanomanufacturing of a new piezoelectric nanomaterial, two-dimensional tellurene, with high productivity and high quality. Piezoelectric nanomaterials exhibit superior mechanical and piezoelectric properties to their bulk counterparts and are increasingly preferred for applications in energy, healthcare, sensors, and biomedical and wearable devices. Therefore, results from this research benefits the U.S. economy and society. This research involves several disciplines including manufacturing, materials science, electrical engineering, device physics, and data science. The multi-disciplinary approach helps broaden participation of women and underrepresented groups in research and positively impacts engineering education.Hydrothermal solution process can overcome several limitations existing in nanomaterial manufacturing. These range from energy budget, scalability, environmental control, and working temperature. However, some scientific barriers are yet to be overcome to realize the full potential of the hydrothermal solution process for manufacturing of 2D nanomaterials. This research is will fill the knowledge gap on the mechanisms for the 2D tellurene formation during hydrothermal synthesis. The objectives are (1) to explore the unique advantage and capability of low-cost, scalable solution-based manufacturing for growth of tellurene nanomaterials with control over their production yield, morphology and dimensions, and (2) to uncover the process-structure-property-functionality relationships in designing, manufacturing, and integrating the tellurene-based wearable piezoelectric nanodevices. The research team will pursue a physics-based theoretical model to predict the structural and piezoelectric properties of tellurene manufactured by the hydrothermal process and conduct experiments to verify the model. The research team will test the hypothesis that surfactant type and concentration are the determining factors for controlling the thickness and hence the piezoelectric behavior of tellurene, and in so doing, will establish the relationships between process parameters and material functionality (e.g., piezoelectricity) in hydrothermal nanomanufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
压电纳米材料将机械信号转化为电能,有望彻底改变新兴的自供电技术。目前制备压电纳米材料的方法受到生长基质、反应压力和温度的限制,限制了其经济制造。该奖项支持基础研究,为开发低温、无基板、可扩展的纳米制造工艺提供所需的知识。该新型工艺涉及基于溶液的新型压电纳米材料二维碲的纳米制造,具有高生产率和高质量。压电纳米材料在机械和压电性能方面优于其块状材料,越来越多地应用于能源、医疗保健、传感器、生物医学和可穿戴设备。因此,这项研究的结果有利于美国的经济和社会。这项研究涉及多个学科,包括制造、材料科学、电气工程、器件物理和数据科学。多学科方法有助于扩大妇女和代表性不足的群体在研究中的参与,并对工程教育产生积极影响。水热溶液法可以克服纳米材料制造中存在的一些限制。这些范围包括能源预算、可扩展性、环境控制和工作温度。然而,要充分发挥水热溶液工艺制造二维纳米材料的潜力,还需要克服一些科学障碍。该研究将填补水热合成过程中二维碲形成机理方面的知识空白。目标是:(1)探索低成本、可扩展的基于解决方案的碲纳米材料制造的独特优势和能力,并控制其产量、形态和尺寸;(2)揭示设计、制造和集成碲基可穿戴压电纳米器件的工艺-结构-性能-功能关系。研究小组将寻求一个基于物理的理论模型来预测水热法制备碲的结构和压电性能,并进行实验来验证该模型。研究小组将测试表面活性剂的类型和浓度是控制厚度和碲的压电行为的决定因素的假设,这样做将建立水热纳米制造中工艺参数和材料功能(例如压电性)之间的关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase transition in two-dimensional tellurene under mechanical strain modulation
- DOI:10.1016/j.nanoen.2019.01.040
- 发表时间:2019-04
- 期刊:
- 影响因子:17.6
- 作者:Yuan Xiang;Shengjie Gao;Rong-guang Xu;Wenzhuo Wu;Y. Leng
- 通讯作者:Yuan Xiang;Shengjie Gao;Rong-guang Xu;Wenzhuo Wu;Y. Leng
Anisotropic thermal conductivity in 2D tellurium
- DOI:10.1088/2053-1583/ab4eee
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5.5
- 作者:Huang, Shouyuan;Segovia, Mauricio;Xu, Xianfan
- 通讯作者:Xu, Xianfan
Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring
- DOI:10.1016/j.nanoen.2018.12.003
- 发表时间:2019-02
- 期刊:
- 影响因子:17.6
- 作者:Min Wu;Yixiu Wang;Shengjie Gao;Ruoxing Wang;Chenxiang Ma;Zhiyuan Tang;Ning Bao;Wenxuan Wu
- 通讯作者:Min Wu;Yixiu Wang;Shengjie Gao;Ruoxing Wang;Chenxiang Ma;Zhiyuan Tang;Ning Bao;Wenxuan Wu
Hybrid printing of wearable piezoelectric sensors
- DOI:10.1016/j.nanoen.2021.106522
- 发表时间:2021-09-22
- 期刊:
- 影响因子:17.6
- 作者:Du, Yipu;Wang, Ruoxing;Zhang, Yanliang
- 通讯作者:Zhang, Yanliang
Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene
- DOI:10.1038/s41565-020-0715-4
- 发表时间:2020-06-29
- 期刊:
- 影响因子:38.3
- 作者:Qiu, Gang;Niu, Chang;Ye, Peide D.
- 通讯作者:Ye, Peide D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenzhuo Wu其他文献
Advancements in functionalized high-performance separators for lithium-sulfur batteries
用于锂硫电池的功能化高性能隔膜的进展
- DOI:
10.1016/j.mser.2025.100924 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:26.800
- 作者:
Shuang Xia;Xuming Xu;Wenzhuo Wu;Yuhui Chen;Lili Liu;Gaojun Wang;Lijun Fu;Qiangyu Zhang;Tao Wang;Jiarui He;Yuping Wu - 通讯作者:
Yuping Wu
Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics
用于自适应电子学和光电子学的压电子学与压电光电子学
- DOI:
10.1038/natrevmats.2016.31 - 发表时间:
2016-05-10 - 期刊:
- 影响因子:86.200
- 作者:
Wenzhuo Wu;Zhong Lin Wang - 通讯作者:
Zhong Lin Wang
One-step fabrication of 2D circuits
- DOI:
10.1038/s41928-019-0237-y - 发表时间:
2019-04 - 期刊:
- 影响因子:34.3
- 作者:
Wenzhuo Wu - 通讯作者:
Wenzhuo Wu
Biopolymers-based skin-interfaced triboelectric sensors
- DOI:
10.1007/s12274-023-5784-x - 发表时间:
2023-07-01 - 期刊:
- 影响因子:9.000
- 作者:
Shujia Xu;Pedro Henrique de Souza Barbosa;Wenzhuo Wu - 通讯作者:
Wenzhuo Wu
Polyethyleneimine-filled sepiolite nanorods-embedded poly(2,5-benzimidazole) composite membranes for wide-temperature PEMFCs
用于宽温质子交换膜燃料电池的聚乙烯亚胺填充海泡石纳米棒嵌入聚(2,5-苯并咪唑)复合膜
- DOI:
10.1016/j.jclepro.2022.131977 - 发表时间:
2022 - 期刊:
- 影响因子:11.1
- 作者:
Qingting Liu;Xiaohe Wang;Xiaoxiao Zhang;Zhiwei Ling;Wenzhuo Wu;Xudong Fu;Rong Zhang;Shengfei Hu;Xiao Li;Feng Zhao;Xujin Bao - 通讯作者:
Xujin Bao
Wenzhuo Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenzhuo Wu', 18)}}的其他基金
CAREER: Scalable Nanomanufacturing of Two-Dimensional Topological Materials for Quantum Device Applications
职业:用于量子器件应用的二维拓扑材料的可扩展纳米制造
- 批准号:
2046936 - 财政年份:2021
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
Collaborative Research: Tellurene mid-infrared integrated photonics
合作研究:碲烯中红外集成光子学
- 批准号:
2024017 - 财政年份:2020
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
NRI: INT: FIngers See Things Differently (FIST-D): A Robotic Explosive Ordnance Disposal (EOD) based on Augmented Tactile Imaging
NRI:INT:手指以不同的方式看待事物 (FIST-D):基于增强触觉成像的机器人爆炸物处理 (EOD)
- 批准号:
1925194 - 财政年份:2019
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
相似海外基金
FMRG: Cyber: A Cyber Nanomanufacturing Platform for Large-scale Production of High-quality MXenes and Other Two-dimensional Nanomaterials
FMRG:Cyber:用于大规模生产高质量 MXene 和其他二维纳米材料的网络纳米制造平台
- 批准号:
2134607 - 财政年份:2021
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
Nanomanufacturing of Atomically-Uniform Two-Dimensional Materials over Large Areas
大面积原子均匀二维材料的纳米制造
- 批准号:
1760931 - 财政年份:2018
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
Large-Scale Nanomanufacturing of Hierarchical Structures by Self-Assembly and Photo-Manipulation
通过自组装和光操作大规模纳米制造分层结构
- 批准号:
1727313 - 财政年份:2017
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
SNM: Low-Cost, Large-Scale Nanomanufacturing of Superinsulating Aerogels and Lightweight, Mechanically-Strong Aerogels
SNM:低成本、大规模纳米制造超绝缘气凝胶和轻质、机械强度高的气凝胶
- 批准号:
1530603 - 财政年份:2016
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
High-throughput Nano-Scale Patterning for Large-area Nanomanufacturing
用于大面积纳米制造的高通量纳米级图案化
- 批准号:
1537440 - 财政年份:2015
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
Large Scale Nanomanufacturing of Novel Inhomogeneous Strained Two-Dimensional Materials with Tunable Electronic and Optical Properties
具有可调谐电子和光学特性的新型非均匀应变二维材料的大规模纳米制造
- 批准号:
1538360 - 财政年份:2015
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
SNM: Three-Color Photolithography for Scalable, Large-Area, Low-Cost Nanomanufacturing
SNM:用于可扩展、大面积、低成本纳米制造的三色光刻
- 批准号:
1449309 - 财政年份:2014
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
New Scalable Nanomanufacturing Technology: Large-Area Nanoimprint Master Fabrication without Using EBL by Innovative Multi-Set Nanopatterning
新型可扩展纳米制造技术:通过创新的多组纳米图案化无需使用 EBL 即可实现大面积纳米压印母版制造
- 批准号:
1436607 - 财政年份:2014
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
SNM: A Versatile Microplasma-based Patterning Technology for Large-Scale, High Throughput Nanomanufacturing
SNM:一种基于微等离子体的多功能图案化技术,用于大规模、高通量纳米制造
- 批准号:
1246715 - 财政年份:2012
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant
CAREER: Nanomanufacturing Process Modeling and Control - A Foundation for Large-Scale Production
职业:纳米制造过程建模和控制 - 大规模生产的基础
- 批准号:
1055394 - 财政年份:2011
- 资助金额:
$ 41.38万 - 项目类别:
Standard Grant














{{item.name}}会员




