III: Medium: Collaborative Research: An Extensible Heterogeneous Network Embedding Framework with Application Specific Adaptation

III:媒介:协作研究:具有特定应用适应能力的可扩展异构网络嵌入框架

基本信息

  • 批准号:
    1763325
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Network data is ubiquitous in the real-world, and many online websites providing various kinds services can all be represented as networks, e.g., online social networks, e-commerce networks, and academic networks. Learning and mining of network structured data have been one of the most popular yet challenging research problems studied in recent years. This project will study the problem of how to find a simple, yet effective representation for each network node, which can capture its characteristics or role in the network based on its connections. This is referred to as the network embedding problem. As an effective tool to transform network data into classic feature-vector representations, network embedding aims at mapping the network data into a low-dimensional feature space, i.e., with a small number of features for each network node. With the embedding results, all these aforementioned networks will be benefited to improve their services provided for the public. This project focuses on developing a general network embedding framework, and investigating its extension to application-oriented, multi-network and dynamic-network scenarios. This project will help support female and minority students to participate in academic research about network embedding. Network embedding studied in this project is a challenging learning task due to many reasons. (1) Data perspective, the heterogeneity of real-world social network data renders existing homogeneous-network oriented embedding models failing to work; (2) Structure preserving perspective, many first-order proximity based embedding methods can hardly preserve the complex social network structure with heterogeneous node types; and (3) Task perspective, the detachment of embedding process with external tasks makes the learnt results ineffective for application tasks with specific objectives. This project aims at tackling these challenges by proposing a novel extensible heterogeneous social network embedding model, which can effectively incorporate the objectives of external tasks in the learning process. This project covers five main themes: (1) extensible heterogeneous network embedding foundation; (2) application oriented embedding of single heterogeneous network; (3) embedding over multiple heterogeneous network for network alignment; (4) dynamic heterogeneous network embedding for friend recommendation; and (5) advanced scalable heterogeneous network embedding technique exploration. This project will greatly enrich the fundamental principles and technologies of social network mining and data mining. In terms of the broader impact, advances in network embedding analysis have transformative potential for fundamental advances in understanding the behavior and activities of the social networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络数据在现实世界中无处不在,许多提供各种服务的在线网站都可以表示为网络,在线社交网络、电子商务网络和学术网络。网络结构化数据的学习和挖掘是近年来研究的热点和挑战性问题之一。本项目将研究如何为每个网络节点找到一个简单而有效的表示方法,该方法可以根据其连接来捕获其在网络中的特性或角色。这被称为网络嵌入问题。作为一种将网络数据转换为经典特征向量表示的有效工具,网络嵌入旨在将网络数据映射到低维特征空间,即,每个网络节点具有少量特征。嵌入的结果,所有这些上述网络将有利于改善他们为公众提供的服务。本项目的重点是开发一个通用的网络嵌入框架,并研究其扩展到面向应用的,多网络和动态网络的场景。该项目将帮助支持女性和少数民族学生参与有关网络嵌入的学术研究。由于多种原因,本项目研究的网络嵌入是一项具有挑战性的学习任务。(1)(2)结构保持方面,许多基于一阶邻近度的嵌入方法难以保持节点类型异构的复杂社会网络结构;(3)任务视角,嵌入过程与外部任务的分离使得学习结果对特定目标的应用任务无效。该项目旨在通过提出一种新的可扩展的异构社会网络嵌入模型来应对这些挑战,该模型可以有效地将外部任务的目标纳入学习过程。该项目包括五个主题:(1)可扩展的异构网络嵌入基础;(2)面向应用的单一异构网络嵌入;(3)基于网络对齐的多异构网络嵌入;(4)基于好友推荐的动态异构网络嵌入;(5)高级可扩展异构网络嵌入技术探索。该项目将极大地丰富社会网络挖掘和数据挖掘的基本原理和技术。就更广泛的影响而言,网络嵌入分析的进步对于理解社交网络行为和活动的根本性进步具有变革性潜力。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination
  • DOI:
    10.48550/arxiv.2206.01535
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yizhen Zheng;Shirui Pan;Vincent C. S. Lee;Yu Zheng;Philip S. Yu
  • 通讯作者:
    Yizhen Zheng;Shirui Pan;Vincent C. S. Lee;Yu Zheng;Philip S. Yu
Graph Self-Supervised Learning: A Survey
Network Embedding With Completely-Imbalanced Labels
具有完全不平衡标签的网络嵌入
A Self-supervised Mixed-curvature Graph Neural Network
  • DOI:
    10.1609/aaai.v36i4.20333
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Sun;Zhongbao Zhang;Junda Ye;Hao Peng;Jiawei Zhang;Sen Su;Philip S. Yu
  • 通讯作者:
    Li Sun;Zhongbao Zhang;Junda Ye;Hao Peng;Jiawei Zhang;Sen Su;Philip S. Yu
A Self-supervised Riemannian GNN with Time Varying Curvature for Temporal Graph Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Yu其他文献

Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks
异构网络中多方面信息的深度协同过滤
OS105 - Training, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography
OS105 - 用于在计算机断层扫描上准确诊断肝细胞癌的多尺度三维深度学习算法的训练、验证和测试
  • DOI:
    10.1016/s0168-8278(22)00551-7
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Wai-Kay Seto;Keith Wan Hang Chiu;Wenming Cao;Gilbert Lui;Jian Zhou;Ho Ming Cheng;Juan Wu;Xinping Shen;Lung Yi Loey Mak;Jinhua Huang;Wai Keung Li;Man-Fung Yuen;Philip Yu
  • 通讯作者:
    Philip Yu
Efficient Reverse Nearest Neighbor Search in Trajectory-driven Services
轨迹驱动服务中的高效反向最近邻搜索
WED-154 Artificial intelligence foundation models for histological diagnosis of hepatocellular carcinoma based on 121,344 digitalized whole slide image patches
WED - 154基于121344个数字化全切片图像块的肝细胞癌组织学诊断人工智能基础模型
  • DOI:
    10.1016/s0168-8278(25)01224-3
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Yan Miao;Philip Yu;Tak-Siu Wong;Regina Cheuk Lam Lo;Ho Ming Cheng;Lequan Yu;Lung-Yi Mak;Man-Fung Yuen;Wai-Kay Seto
  • 通讯作者:
    Wai-Kay Seto
Hierarchical Representation Learning for Attributed Networks
属性网络的层次表示学习

Philip Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Yu', 18)}}的其他基金

III: Medium: Collaborative Research: Self-Supervised Recommender System Learning with Application Specific Adaption
III:媒介:协作研究:具有特定应用适应性的自监督推荐系统学习
  • 批准号:
    2106758
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
III: Small: Exploiting the Massive User Generated Utterances for Intent Mining under Scarce Annotations
III:小:利用大量用户生成的话语进行稀缺注释下的意图挖掘
  • 批准号:
    1909323
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Learning Dynamic and Robust Defenses Against Co-Adaptive Spammers
SaTC:核心:小型:协作:学习针对自适应垃圾邮件发送者的动态且强大的防御
  • 批准号:
    1930941
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
III: Small: Fusion of Heterogeneous Networks for Synergistic Knowledge Discovery
III:小:异构网络融合以实现协同知识发现
  • 批准号:
    1526499
  • 财政年份:
    2015
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
TC: Small: Robust Anonymization on Social Networks
TC:小:社交网络上强大的匿名化
  • 批准号:
    1115234
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: G-SESAME Cloud: A Dynamically Scalable Collaboration Community for Biological Knowledge Discovery
协作研究:G-SESAME Cloud:用于生物知识发现的动态可扩展协作社区
  • 批准号:
    0960443
  • 财政年份:
    2010
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
III:Small:Privacy Preserving Data Publishing: A Second Look on Group based Anonymization
III:小:隐私保护数据发布:基于群体的匿名化的再审视
  • 批准号:
    0914934
  • 财政年份:
    2009
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了