III: Medium: Collaborative Research: Self-Supervised Recommender System Learning with Application Specific Adaption
III:媒介:协作研究:具有特定应用适应性的自监督推荐系统学习
基本信息
- 批准号:2106758
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the era of big data, to effectively help people get their desired information, recommender systems are widely adopted by various online platforms. Recommender systems aim to provide users with high-quality recommendation services. In addition to e-commerce, other potential applications include precision medicine to recommend targeted patient treatment, friend recommendation in online social networks, decision support, e-learning, etc. However, various data quality problems and model learning challenges will create great obstacles for recommender system deployments in the real world. To address these challenges, this project explores to develop new techniques for learning recommender systems that don’t rely on supervision information like manual label or annotation, which can be costly to obtain. This is referred to as the recommender system self-supervised learning, which provides a promising learning paradigm that can discover the supervision signals from the data itself without the need of costly manual annotation. As an effective technique, self-supervised learning will enable recommender systems to work well in a variety of challenging application scenarios to provide people with high-quality and fair recommendation services for almost all the existing online platforms mentioned above. This project focuses on developing a general recommender system framework with self-supervised learning, and investigating its various extensions.This project will develop unified and extensible principles, methods, and technologies for recommender system learning, and study the general applicability and benefit of recommender system self-supervised learning. The recommender system tasks studied in this project are extremely challenging due to many reasons: (1) lack of supervision information, which renders many existing recommendation models to be ineffective; (2) inherent data biases, which can lead to unfair treatment to the minority user groups; (3) the cold-start problem, which concerns on the issue of inferences for subjects with little collected information; and (4) recommender system dynamics, which reflects the changing characteristics or behaviors of the users. This project will these challenges on learning representations for recommender systems with a novel and extensible graph neural network model. Based on the state-of-the-art self-supervised learning techniques, e.g., data augmentation which aims to significantly increase the diversity of data available for training models without actually collecting new data, and contrastive learning which intends to learn succinct data representations such that similar samples stay close to each other, while dissimilar ones are far apart, the proposed model can be pre-trained with self-supervised learning, which will be further transferred to address the problems studied in this project via effective fine-tuning. Specifically, this project will focus on studying four main tasks: (1) fairness-oriented recommender systems pre-training and fine-tuning, (2) cold-start recommender system learning via data augmentation; (3) inter-platform recommender system contrastive learning; and (4) lifelong dynamic recommender system learning via self-supervised model tuning. In terms of broader impacts, besides the recommendation tasks as investigated in this project, advances in such research studies have transformative potentials for fundamental development in reforming the current and future AI model fairness, trustworthiness, and lifelong learning studies in broad applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,为了有效地帮助人们获得想要的信息,推荐系统被各种网络平台广泛采用。推荐系统旨在为用户提供高质量的推荐服务。除了电子商务,其他潜在的应用还包括精准医疗,以推荐有针对性的患者治疗,在线社交网络中的朋友推荐,决策支持,电子学习等。然而,各种数据质量问题和模型学习挑战将为推荐系统在现实世界中的部署带来巨大障碍。为了应对这些挑战,该项目探索开发新的学习推荐系统技术,这些技术不依赖于手动标签或注释等监督信息,这些信息的获取成本很高。这被称为推荐系统的自监督学习,它提供了一种很有前途的学习范式,可以从数据本身中发现监督信号,而不需要昂贵的人工注释。作为一种有效的技术,自监督学习将使推荐系统能够在各种具有挑战性的应用场景中很好地工作,为人们提供高质量和公平的推荐服务,几乎适用于上述所有现有的在线平台。这个项目的重点是开发一个具有自我监督学习的通用推荐系统框架,并研究其各种扩展。本项目将开发统一的、可扩展的推荐系统学习原理、方法和技术,研究推荐系统自监督学习的一般适用性和效益。本项目所研究的推荐系统任务极具挑战性,原因有很多:(1)缺乏监督信息,使得现有的许多推荐模型无效;(2)固有的数据偏差,这可能导致对少数用户群体的不公平对待;(3)冷启动问题(cold-start problem),即在被试收集的信息很少的情况下进行推理的问题;(4)推荐系统的动态性,它反映了用户的变化特征或行为。该项目将利用一种新颖的、可扩展的图神经网络模型来学习推荐系统的表示。基于最先进的自监督学习技术,例如数据增强技术,目的是在不实际收集新数据的情况下显著增加可用于训练模型的数据的多样性;对比学习技术,旨在学习简洁的数据表示,使相似的样本彼此接近,而不相似的样本相隔很远,本文提出的模型可以通过自监督学习进行预训练。这将进一步转移,通过有效的微调来解决本项目研究的问题。具体而言,本项目将重点研究四个主要任务:(1)面向公平的推荐系统预训练和微调;(2)通过数据增强冷启动推荐系统学习;(3)跨平台推荐系统对比学习;(4)基于自监督模型调优的终身动态推荐系统学习。就更广泛的影响而言,除了本项目所研究的推荐任务外,此类研究的进展在改革当前和未来人工智能模型的公平性、可信度以及广泛应用中的终身学习研究方面具有根本性的变革潜力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential Recommendation via Stochastic Self-Attention
- DOI:10.1145/3485447.3512077
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Ziwei Fan;Zhiwei Liu;Yu Wang;Alice Wang;Zahra Nazari;Lei Zheng;Hao Peng;Philip S. Yu
- 通讯作者:Ziwei Fan;Zhiwei Liu;Yu Wang;Alice Wang;Zahra Nazari;Lei Zheng;Hao Peng;Philip S. Yu
Graph Collaborative Signals Denoising and Augmentation for Recommendation
- DOI:10.1145/3539618.3591994
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Ziwei Fan;Ke Xu;Zhang Dong;Hao Peng;Jiawei Zhang;Philip S. Yu
- 通讯作者:Ziwei Fan;Ke Xu;Zhang Dong;Hao Peng;Jiawei Zhang;Philip S. Yu
Hyperbolic Hypergraphs for Sequential Recommendation
- DOI:10.1145/3459637.3482351
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Yicong Li;Hongxu Chen;Xiangguo Sun;Zhenchao Sun;Lin Li;Li-zhen Cui;Philip S. Yu;Guandong Xu-Guandong-X
- 通讯作者:Yicong Li;Hongxu Chen;Xiangguo Sun;Zhenchao Sun;Lin Li;Li-zhen Cui;Philip S. Yu;Guandong Xu-Guandong-X
Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation
- DOI:10.1145/3543507.3583529
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Ziwei Fan;Zhiwei Liu;Hao Peng;Philip S. Yu
- 通讯作者:Ziwei Fan;Zhiwei Liu;Hao Peng;Philip S. Yu
Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network
- DOI:10.1145/3485447.3512273
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Liangwei Yang;Zhiwei Liu;Yu Wang;Chen Wang;Ziwei Fan;Philip S. Yu
- 通讯作者:Liangwei Yang;Zhiwei Liu;Yu Wang;Chen Wang;Ziwei Fan;Philip S. Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Yu其他文献
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks
异构网络中多方面信息的深度协同过滤
- DOI:
10.1109/tkde.2019.2941938 - 发表时间:
2019-09 - 期刊:
- 影响因子:8.9
- 作者:
Chuan Shi;Xiaotian Han;Song Li;Xiao Wang;Senzhang Wang;Junping Du;Philip Yu - 通讯作者:
Philip Yu
OS105 - Training, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography
OS105 - 用于在计算机断层扫描上准确诊断肝细胞癌的多尺度三维深度学习算法的训练、验证和测试
- DOI:
10.1016/s0168-8278(22)00551-7 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Wai-Kay Seto;Keith Wan Hang Chiu;Wenming Cao;Gilbert Lui;Jian Zhou;Ho Ming Cheng;Juan Wu;Xinping Shen;Lung Yi Loey Mak;Jinhua Huang;Wai Keung Li;Man-Fung Yuen;Philip Yu - 通讯作者:
Philip Yu
Efficient Reverse Nearest Neighbor Search in Trajectory-driven Services
轨迹驱动服务中的高效反向最近邻搜索
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiao Pan;Shili Nie;Haibo Hu;Philip Yu;Jingfeng Guo - 通讯作者:
Jingfeng Guo
WED-154 Artificial intelligence foundation models for histological diagnosis of hepatocellular carcinoma based on 121,344 digitalized whole slide image patches
WED - 154基于121344个数字化全切片图像块的肝细胞癌组织学诊断人工智能基础模型
- DOI:
10.1016/s0168-8278(25)01224-3 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Yan Miao;Philip Yu;Tak-Siu Wong;Regina Cheuk Lam Lo;Ho Ming Cheng;Lequan Yu;Lung-Yi Mak;Man-Fung Yuen;Wai-Kay Seto - 通讯作者:
Wai-Kay Seto
Hierarchical Representation Learning for Attributed Networks
属性网络的层次表示学习
- DOI:
10.1109/tkde.2021.3117274 - 发表时间:
2023-03 - 期刊:
- 影响因子:8.9
- 作者:
Shu Zhao;Ziwei Du;Jie Chen;Yanping Zhang;Jie Tang;Philip Yu - 通讯作者:
Philip Yu
Philip Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Yu', 18)}}的其他基金
SaTC: CORE: Small: Collaborative: Learning Dynamic and Robust Defenses Against Co-Adaptive Spammers
SaTC:核心:小型:协作:学习针对自适应垃圾邮件发送者的动态且强大的防御
- 批准号:
1930941 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Exploiting the Massive User Generated Utterances for Intent Mining under Scarce Annotations
III:小:利用大量用户生成的话语进行稀缺注释下的意图挖掘
- 批准号:
1909323 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: An Extensible Heterogeneous Network Embedding Framework with Application Specific Adaptation
III:媒介:协作研究:具有特定应用适应能力的可扩展异构网络嵌入框架
- 批准号:
1763325 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
III: Small: Fusion of Heterogeneous Networks for Synergistic Knowledge Discovery
III:小:异构网络融合以实现协同知识发现
- 批准号:
1526499 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
TC: Small: Robust Anonymization on Social Networks
TC:小:社交网络上强大的匿名化
- 批准号:
1115234 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: G-SESAME Cloud: A Dynamically Scalable Collaboration Community for Biological Knowledge Discovery
协作研究:G-SESAME Cloud:用于生物知识发现的动态可扩展协作社区
- 批准号:
0960443 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III:Small:Privacy Preserving Data Publishing: A Second Look on Group based Anonymization
III:小:隐私保护数据发布:基于群体的匿名化的再审视
- 批准号:
0914934 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant