SaTC: CORE: Small: Collaborative: Learning Dynamic and Robust Defenses Against Co-Adaptive Spammers
SaTC:核心:小型:协作:学习针对自适应垃圾邮件发送者的动态且强大的防御
基本信息
- 批准号:1930941
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Online reputation systems are ubiquitous for customers to evaluate businesses, products, people, and organizations based on reviews from the crowd. For example, Yelp and TripAdvisor rank restaurants and hotels based on user reviews, and RateMDs allows patients to review doctors and hospitals. These systems can however be leveraged by spammers to mislead and manipulate the inexperienced customers with fake but well-disguised reviews (spams). To comprehensively protect customers and honest businesses, advanced spam detection techniques have been deployed. Nonetheless, intelligent spammers can still probe and then evolve to bypass the deployed detectors. This project investigates dynamic and robust countermeasures to defeat the evolving spammers. This research will allow regulatory agencies to enforce a more fair, transparent, and trustworthy online environment, encourage business owners to offer higher quality products and services rather than fake opinions, and ultimately, allow consumers to increasingly rely on the reputation systems confidently to save money, time and even lives. The project will investigate the design of adaptive spam detection technologies and systems against intelligent spammers that learn to bypass static detectors. The investigation will follow two principles: (1) the goals and workings of the detectors and spammers can be sensed through their behaviors; (2) both parties should act dynamically to optimally defeat their opponents who co-adapt with the other's behaviors. Based on these principles, the researchers aim to: (i) investigate the footprint of dynamic spamming and formalize the gained insights into evasion models against static detectors; (ii) model the interactions between the evolving spammer and dynamic detections through deep reinforcement learning and Markov games; and (iii) introduce multiple cooperative spammers to inform more complex spammer-detector co-adaptations through multi-agent and hierarchical reinforcement learning. The research aims will be complemented by metrics and evaluations that capture realistic spammer and detector goals and constraints. The project will result in datasets, algorithms, and testbed system for the research community, and gamified educational software and materials to increase awareness of fake contents among a broader population.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在线声誉系统无处不在,客户可以根据人群的评论来评估企业、产品、人员和组织。例如,Yelp和TripAdvisor根据用户评论对餐厅和酒店进行排名,RateMD允许患者评论医生和医院。然而,垃圾邮件发送者可以利用这些系统通过虚假但伪装得很好的评论(垃圾邮件)来误导和操纵缺乏经验的客户。为全面保护客户和诚信企业,部署了先进的垃圾邮件检测技术。尽管如此,智能垃圾邮件发送者仍然可以探测,然后进化以绕过部署的检测器。该项目研究动态和强大的对策,以击败不断演变的垃圾邮件发送者。这项研究将使监管机构能够实施一个更加公平、透明和值得信赖的在线环境,鼓励企业主提供更高质量的产品和服务,而不是虚假的意见,最终让消费者越来越自信地依赖信誉系统来节省金钱、时间甚至生命。该项目将调查针对学习绕过静态检测器的智能垃圾邮件发送者的自适应垃圾邮件检测技术和系统的设计。调查将遵循两个原则:(1)可以通过检测器和垃圾邮件发送者的行为来感知他们的目标和工作;(2)双方都应该动态地采取行动,以最优的方式击败与对方的行为相适应的对手。基于这些原理,研究人员的目标是:(I)调查动态垃圾邮件的足迹,并将所获得的见解形式化到针对静态检测器的规避模型中;(Ii)通过深度强化学习和马尔可夫博弈来建模不断演变的垃圾邮件发送者和动态检测之间的交互;以及(Iii)引入多个协作垃圾邮件发送者,通过多代理和分层强化学习来通知更复杂的垃圾邮件发送者-检测器的共同适应。研究目标将得到衡量标准和评估的补充,这些指标和评估捕捉现实的垃圾邮件发送者和检测器的目标和约束。该项目将为研究社区带来数据集、算法和试验台系统,并将教育软件和材料游戏化,以提高更广泛人群对虚假内容的认识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RumorDecay: Rumor Dissemination Interruption for Target Recipients in Social Networks
- DOI:10.1109/tsmc.2022.3144141
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Zhongyuan Jiang;Xianyu Chen;Jianfeng Ma;P. Yu
- 通讯作者:Zhongyuan Jiang;Xianyu Chen;Jianfeng Ma;P. Yu
Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection
- DOI:10.1145/3397271.3401253
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Zhiwei Liu;Yingtong Dou;Philip S. Yu;Yutong Deng;Hao Peng-
- 通讯作者:Zhiwei Liu;Yingtong Dou;Philip S. Yu;Yutong Deng;Hao Peng-
Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs
- DOI:10.1609/aaai.v35i5.16563
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Li Sun;Zhongbao Zhang;Jiawei Zhang;Feiyang Wang;Hao Peng;Sen Su;Philip S. Yu
- 通讯作者:Li Sun;Zhongbao Zhang;Jiawei Zhang;Feiyang Wang;Hao Peng;Sen Su;Philip S. Yu
From Joint Feature Selection and Self-Representation Learning to Robust Multi-view Subspace Clustering
- DOI:10.1109/icdm.2019.00183
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Hui Yan;Siyu Liu;Philip S. Yu
- 通讯作者:Hui Yan;Siyu Liu;Philip S. Yu
BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Kay Liu;Yingtong Dou;Yue Zhao;Xueying Ding;Xiyang Hu;Ruitong Zhang;Kaize Ding;Canyu Chen;Hao Peng;Kai Shu;Lichao Sun;Jundong Li;George H. Chen;Zhihao Jia;Philip S. Yu
- 通讯作者:Kay Liu;Yingtong Dou;Yue Zhao;Xueying Ding;Xiyang Hu;Ruitong Zhang;Kaize Ding;Canyu Chen;Hao Peng;Kai Shu;Lichao Sun;Jundong Li;George H. Chen;Zhihao Jia;Philip S. Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Yu其他文献
Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks
异构网络中多方面信息的深度协同过滤
- DOI:
10.1109/tkde.2019.2941938 - 发表时间:
2019-09 - 期刊:
- 影响因子:8.9
- 作者:
Chuan Shi;Xiaotian Han;Song Li;Xiao Wang;Senzhang Wang;Junping Du;Philip Yu - 通讯作者:
Philip Yu
OS105 - Training, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography
OS105 - 用于在计算机断层扫描上准确诊断肝细胞癌的多尺度三维深度学习算法的训练、验证和测试
- DOI:
10.1016/s0168-8278(22)00551-7 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Wai-Kay Seto;Keith Wan Hang Chiu;Wenming Cao;Gilbert Lui;Jian Zhou;Ho Ming Cheng;Juan Wu;Xinping Shen;Lung Yi Loey Mak;Jinhua Huang;Wai Keung Li;Man-Fung Yuen;Philip Yu - 通讯作者:
Philip Yu
Efficient Reverse Nearest Neighbor Search in Trajectory-driven Services
轨迹驱动服务中的高效反向最近邻搜索
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiao Pan;Shili Nie;Haibo Hu;Philip Yu;Jingfeng Guo - 通讯作者:
Jingfeng Guo
WED-154 Artificial intelligence foundation models for histological diagnosis of hepatocellular carcinoma based on 121,344 digitalized whole slide image patches
WED - 154基于121344个数字化全切片图像块的肝细胞癌组织学诊断人工智能基础模型
- DOI:
10.1016/s0168-8278(25)01224-3 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Yan Miao;Philip Yu;Tak-Siu Wong;Regina Cheuk Lam Lo;Ho Ming Cheng;Lequan Yu;Lung-Yi Mak;Man-Fung Yuen;Wai-Kay Seto - 通讯作者:
Wai-Kay Seto
Hierarchical Representation Learning for Attributed Networks
属性网络的层次表示学习
- DOI:
10.1109/tkde.2021.3117274 - 发表时间:
2023-03 - 期刊:
- 影响因子:8.9
- 作者:
Shu Zhao;Ziwei Du;Jie Chen;Yanping Zhang;Jie Tang;Philip Yu - 通讯作者:
Philip Yu
Philip Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Yu', 18)}}的其他基金
III: Medium: Collaborative Research: Self-Supervised Recommender System Learning with Application Specific Adaption
III:媒介:协作研究:具有特定应用适应性的自监督推荐系统学习
- 批准号:
2106758 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
III: Small: Exploiting the Massive User Generated Utterances for Intent Mining under Scarce Annotations
III:小:利用大量用户生成的话语进行稀缺注释下的意图挖掘
- 批准号:
1909323 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: An Extensible Heterogeneous Network Embedding Framework with Application Specific Adaptation
III:媒介:协作研究:具有特定应用适应能力的可扩展异构网络嵌入框架
- 批准号:
1763325 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
III: Small: Fusion of Heterogeneous Networks for Synergistic Knowledge Discovery
III:小:异构网络融合以实现协同知识发现
- 批准号:
1526499 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
TC: Small: Robust Anonymization on Social Networks
TC:小:社交网络上强大的匿名化
- 批准号:
1115234 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: G-SESAME Cloud: A Dynamically Scalable Collaboration Community for Biological Knowledge Discovery
协作研究:G-SESAME Cloud:用于生物知识发现的动态可扩展协作社区
- 批准号:
0960443 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
III:Small:Privacy Preserving Data Publishing: A Second Look on Group based Anonymization
III:小:隐私保护数据发布:基于群体的匿名化的再审视
- 批准号:
0914934 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
- 批准号:
2321649 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
- 批准号:
2310470 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant