SHF: Medium: Time Based Deep Neural Networks: An Integrated Hardware-Software Approach
SHF:媒介:基于时间的深度神经网络:一种集成的硬件软件方法
基本信息
- 批准号:1763761
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advancements in deep learning hardware and algorithms are providing computers with unprecedented levels of human-like intelligence for applications such as self-driving cars, patient diagnosis and treatment, speech processing, strategy games, and education. Traditional deep learning algorithms rely on powerful computers tethered to the cloud which incurs a large communication overhead, requires extensive computing resources, and compromises privacy and security. There is a strong consensus among experts that the next frontier in deep learning will be highly-efficient neural network processors running on mobile platforms. This project aims at developing a compact and low power alternative to conventional deep learning computing hardware, specifically targeted for edge devices. The proposed approach is based on a novel computing concept called time-based circuits, which can deliver a similar level of inference performance at only a fraction of the power consumption compared to traditional methods. Throughout the project, the investigators will consider transferring the new neural network computing methods to industry. The new time-based deep learning computation methods will be incorporated into the graduate and undergraduate curricula, as well as K-12 outreach activities, of the electrical engineering and computer science departments at the University of Minnesota.This project will focus on both hardware and software techniques for enabling deep learning applications on resource-constrained mobile platforms. On the hardware side, the team will demonstrate a prototype low-power deep neural network processor where internal operations such as convolution, pooling, and activation functions are performed entirely in the time domain. On the software side, the team will develop pruning, approximation, and hybrid approaches that can effectively reduce the complexity of deep neural networks with minimal impact on the overall inference accuracy. A unique aspect of this project is the continual interaction between the hardware and software groups to deliver the first fully time-based deep neural network engine targeted for edge devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习硬件和算法的最新进展为计算机提供了前所未有的人类智能水平,用于自动驾驶汽车、患者诊断和治疗、语音处理、战略游戏和教育等应用。传统的深度学习算法依赖于连接到云端的强大计算机,这会产生大量的通信开销,需要大量的计算资源,并危及隐私和安全。专家们达成了一个强烈的共识,即深度学习的下一个前沿将是在移动的平台上运行的高效神经网络处理器。该项目旨在开发一种紧凑、低功耗的替代传统深度学习计算硬件的方案,专门针对边缘设备。所提出的方法是基于一种新的计算概念,称为基于时间的电路,它可以提供一个类似的推理性能水平,只有一小部分的功耗相比,传统的方法。在整个项目中,研究人员将考虑将新的神经网络计算方法转移到工业中。新的基于时间的深度学习计算方法将被纳入明尼苏达大学电气工程和计算机科学系的研究生和本科生课程以及K-12推广活动中。该项目将专注于在资源受限的移动的平台上实现深度学习应用的硬件和软件技术。在硬件方面,该团队将展示一个原型低功耗深度神经网络处理器,其中卷积、池化和激活函数等内部操作完全在时域中执行。在软件方面,该团队将开发修剪、近似和混合方法,这些方法可以有效降低深度神经网络的复杂性,同时对整体推理准确性的影响最小。该项目的一个独特之处在于硬件和软件团队之间的持续互动,以提供首个针对边缘设备的完全基于时间的深度神经网络引擎。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NeuPart: Using Analytical Models to Drive Energy-Efficient Partitioning of CNN Computations on Cloud-Connected Mobile Clients
- DOI:10.1109/tvlsi.2020.2995135
- 发表时间:2019-05
- 期刊:
- 影响因子:2.8
- 作者:Susmita Dey Manasi;F. S. Snigdha;S. Sapatnekar
- 通讯作者:Susmita Dey Manasi;F. S. Snigdha;S. Sapatnekar
Exploring the Feasibility of Using 3-D XPoint as an In-Memory Computing Accelerator
- DOI:10.1109/jxcdc.2021.3112238
- 发表时间:2021-06
- 期刊:
- 影响因子:2.4
- 作者:Masoud Zabihi;Salonik Resch;Husrev Cilasun;Z. Chowdhury;Zhengyang Zhao;Ulya R. Karpuzcu;Jianping Wang;S. Sapatnekar
- 通讯作者:Masoud Zabihi;Salonik Resch;Husrev Cilasun;Z. Chowdhury;Zhengyang Zhao;Ulya R. Karpuzcu;Jianping Wang;S. Sapatnekar
SeFAct: selective feature activation and early classification for CNNs
- DOI:10.1145/3287624.3287663
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:F. S. Snigdha;Ibrahim Ahmed;Susmita Dey Manasi;Meghna G. Mankalale;Jiang Hu;S. Sapatnekar
- 通讯作者:F. S. Snigdha;Ibrahim Ahmed;Susmita Dey Manasi;Meghna G. Mankalale;Jiang Hu;S. Sapatnekar
Shallowing Deep Networks: Layer-wise Pruning based on Feature Representations
- DOI:10.1109/tpami.2018.2874634
- 发表时间:2019-12-01
- 期刊:
- 影响因子:23.6
- 作者:Chen, Shi;Zhao, Qi
- 通讯作者:Zhao, Qi
A 104.8TOPS/W One-Shot Time-Based Neuromorphic Chip Employing Dynamic Threshold Error Correction in 65nm
一种采用 65nm 动态阈值纠错的 104.8TOPS/W 单次基于时间的神经形态芯片
- DOI:10.1109/asscc.2018.8579302
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Everson, Luke R.;Liu, Muqing;Pande, Nakul;Kim, Chris H.
- 通讯作者:Kim, Chris H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris Kim其他文献
Optimizing Marker Design to Improve Precision of Optical Camera-Based Rigid-Body Motion Tracking and Correction in Medical Imaging
优化标记设计以提高医学成像中基于光学相机的刚体运动跟踪和校正的精度
- DOI:
10.1109/nss/mic44867.2021.9875434 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Fisher;Chris Kim;A. Groll;C. Levin - 通讯作者:
C. Levin
Lexichrome: Text Construction and Lexical Discovery with Word-Color Associations Using Interactive Visualization
Lexichrome:使用交互式可视化的文本构建和词汇颜色关联的词汇发现
- DOI:
10.1145/3357236.3395503 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chris Kim;Uta Hinrichs;Saif M. Mohammad;C. Collins - 通讯作者:
C. Collins
Peripheral Display in Virtual Reality Environments involves Higher Cognitive Demands Compared to Centered Display during Dual-Tasking
与双任务期间的中心显示相比,虚拟现实环境中的外围显示涉及更高的认知需求
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Moncef Bouzar;Marquessa Bryce;Segny Castillo;Damian Cortez;Olivia Doucette;Bayron Garcia;Andy Ho;Kara Ito;Chris Kim;Kelly Lansdell;Rahul Soangra - 通讯作者:
Rahul Soangra
Re-L Catan: Evaluation of Deep Reinforcement Learning for Resource Management Under Competitive and Uncertain Environments
Re-L Catan:竞争和不确定环境下资源管理的深度强化学习评估
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Chris Kim;Aaron Y. Li - 通讯作者:
Aaron Y. Li
サブスレッショルド領域におけるラッチ回路の動作安定性モデル
锁存电路亚阈值区工作稳定性模型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ketul B. Sutaria;Jyothi Bhaskarr Velamala;Chris Kim;Takashi Sato;and Yu Cao;室田一雄;鎌苅竜也,塩見準,石原亨,小野寺秀俊 - 通讯作者:
鎌苅竜也,塩見準,石原亨,小野寺秀俊
Chris Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris Kim', 18)}}的其他基金
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
- 批准号:
2230963 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Innovating Quantum-Inspired Learning for Undergraduates in Research and Engineering
协作研究:为研究和工程本科生创新量子启发学习
- 批准号:
2142248 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Feedback-Driven Resiliency for Near-Threshold Systems
协作研究:反馈驱动的近阈值系统弹性
- 批准号:
1255937 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
A Sub-2V Printed Flexible Organic RFID System Design for Long Range Communication
用于远距离通信的 Sub-2V 印刷柔性有机 RFID 系统设计
- 批准号:
0925312 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Design Framework for Organic Transistor Based Integrated Circuits
职业:基于有机晶体管的集成电路的设计框架
- 批准号:
0845605 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似海外基金
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312448 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312979 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Integrated Verification of IoT and Real-time Communication Protocols
合作研究:SHF:中:物联网和实时通信协议的集成验证
- 批准号:
2211996 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Parallel and Real-Time Multicore Scheduling for an Efficiently-Used Cache (PARSEC)
合作研究:CNS 核心:中:高效使用缓存的并行实时多核调度 (PARSEC)
- 批准号:
2211641 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Real-Time Liquid Wireless Networking for Data-Intensive Rural Applications
合作研究:CNS 核心:媒介:数据密集型农村应用的实时液体无线网络
- 批准号:
2212574 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Real-Time Liquid Wireless Networking for Data-Intensive Rural Applications
合作研究:CNS 核心:媒介:数据密集型农村应用的实时液体无线网络
- 批准号:
2212575 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Integrated Verification of IoT and Real-time Communication Protocols
合作研究:SHF:中:物联网和实时通信协议的集成验证
- 批准号:
2211997 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant