ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
基本信息
- 批准号:2228176
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past decade, graph theory has undertaken a remarkable shift --- a profound transformation. Graph theory is no longer limited to a few vertices and edges (as in the famous riddle of "The Seven Bridges of Konigsberg"). Today, graph theory is often about understanding our ever-more connected world, which may contain millions and billions of nodes. Such a change is in large part due to the humongous amount of information present in today's society. For example, successful Web search algorithms are based on WWW graphs, which contain all web pages as vertices and hyperlinks as edges. In other cases, such as social networks, the sheer number of users contribute to the huge size of the graphs representing a particular social medium. In response to challenges set forth in the ATD announcement, this work seeks to develop a framework using advanced tools from random and spectral graph theory to carry out quantitative analyses of the structure and dynamics of large graphs or networks. Here, the focus is on finding patterns that may be hidden in them that could potentially be indicative of emerging threats of various kinds (internets, critical infrastructure networks, financial networks, social networks, etc.)This research plans to use tools from random graph theory, differential geometry, and information theory to carry out analytic computations of observable network structures and capture the most relevant and refined quantities of real-world networks. The approach is based on the Szemeredi regularity lemma, which provides regular partitions of a given graph. If these can be found efficiently, then rapid (and often parallel- and distributed- among partitions) methods to compute a myriad of graph properties of interest, including graph merging and subgraph detection, will be achieved. Unfortunately, the regularity Lemma is only an existence proof; however, it is here, using ideas from spectral graph theory, where computationally efficient and scalable methods to approximate these partitions will be developed. Moreover, to further achieve efficiency, a new model will be developed (based on a stochastic block model) representing information on graphs. The motivation behind this approach is two-fold. First, the most meaningful types of graph operations (graph merging, etc.) tend to preserve such partitions. Second, these blocks (or communities) can further reduce the complexity of finding a particular subgraph (often indicative of emerging threats) in a given graph.
在过去的十年里,图论发生了显著的转变——一场深刻的变革。图论不再局限于几个顶点和边缘(如著名的“柯尼斯堡七座桥”之谜)。今天,图论通常是关于理解我们这个连接越来越紧密的世界,这个世界可能包含数百万甚至数十亿个节点。这种变化在很大程度上是由于当今社会中存在的海量信息。例如,成功的Web搜索算法基于WWW图,它将所有网页作为顶点,将超链接作为边。在其他情况下,例如社交网络,用户的数量会导致特定社交媒体的图表的巨大尺寸。为了应对ATD公告中提出的挑战,这项工作旨在开发一个框架,使用随机和谱图理论的先进工具,对大型图或网络的结构和动态进行定量分析。在这里,重点是寻找可能隐藏在其中的模式,这些模式可能潜在地指示各种新出现的威胁(互联网,关键基础设施网络,金融网络,社交网络等)。本研究计划使用随机图论,微分几何和信息论的工具对可观察的网络结构进行分析计算,并捕获现实世界网络中最相关和最精细的数量。该方法基于Szemeredi规则引理,该引理提供了给定图的规则划分。如果可以有效地找到这些,那么将实现快速(通常是并行和分布的)方法来计算感兴趣的无数图属性,包括图合并和子图检测。不幸的是,正则性引理只是一个存在性证明;然而,正是在这里,利用谱图理论的思想,将开发出计算效率高且可扩展的方法来近似这些分区。此外,为了进一步提高效率,将开发一种新的模型(基于随机块模型)来表示图上的信息。这种方法背后的动机是双重的。首先,最有意义的图操作类型(图合并等)倾向于保留这样的分区。其次,这些块(或社区)可以进一步降低在给定图中查找特定子图(通常表示新出现的威胁)的复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Chin其他文献
<strong>DNL310 normalizes primary storage substrates, corrects biomarkers of lysosomal dysfunction and reduces biomarkers of neuronal injury (neurofilament light chain) in MPS II: 2-year interim analysis of a phase 1/2 study</strong>
- DOI:
10.1016/j.ymgme.2023.107773 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Akhil Bhalla;Khishig Tsogtbaatar;Chau Tran;Ritesh Ravi;Meng Fang;Imanol Zubizarreta;Rupa Caprihan;Ajith Karunakara;Yuda Zhu;Elizabeth Sinclair;Dominique Jacquemet-Engelhart;Johannes Kast;Tony Hung;Kimberly Scearce-Levie;Matt Troyer;Peter Chin;Katia Meirelles;Anna Bakardjiev - 通讯作者:
Anna Bakardjiev
<strong>Interim analysis of key clinical outcomes from a phase 1/2 study of weekly intravenous DNL310 (brain-penetrant enzyme replacement therapy) in MPS II</strong>
- DOI:
10.1016/j.ymgme.2022.107231 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Joseph Muenzer;Paul Harmatz;Barbara K. Burton;Deepa Rajan;Simon A. Jones;Steven D. Chessler;Natalie Engmann;Adam Scheller;Charlene Chen;Rupa Caprihan;Akhil Bhalla;Tony Hung;Jason Nachtigall;Imanol Zubizarreta;Angela Kay;Simona Costanzo;Jeffrey M. Harris;Yuda Zhu;Peter Chin;Matthew D. Troyer - 通讯作者:
Matthew D. Troyer
1918 UPDATE ON THE PROSTATIC URETHRAL LIFT, A NOVEL MINIMALLY INVASIVE TREATMENT FOR SYMPTOMATIC BENIGN PROSTATIC HYPERPLASIA
- DOI:
10.1016/j.juro.2010.02.1885 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Henry Woo;Peter Chin;Damien Bolton;Gregory Jack;Kevin Chu;Jeffrey Thavaseelan;Prem Rashid;Thomas McNicholas;Harcharan Gill;Mark Plante;Reginald Bruskewitz;Claus Roehrborn - 通讯作者:
Claus Roehrborn
Work-Based Education as a Pathway to Resilience
以工作为基础的教育是增强韧性的途径
- DOI:
10.22610/jevr.v2i5.35 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J. Versnel;Christopher DeLuca;J. D. Lugt;N. Hutchinson;Peter Chin - 通讯作者:
Peter Chin
The Intended Curriculum in Co-operative Education in Ontario Secondary Schools: An Analysis of School District Documents.
安大略省中学合作教育的预期课程:学区文件分析。
- DOI:
10.5328/jver26.2.103 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
N. Hutchinson;H. Munby;Peter Chin;K. Edwards;Karin Steiner;Christine Chapman;Katherine Ho;Wendy Mills de Espana - 通讯作者:
Wendy Mills de Espana
Peter Chin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Chin', 18)}}的其他基金
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
- 批准号:
1737897 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant














{{item.name}}会员




