Collaborative Research: Defects and Dopants in Critical Wide Band Gap Semiconductors - ZnO, InGaZnO, Ga2O3, and ScN

合作研究:关键宽带隙半导体中的缺陷和掺杂剂 - ZnO、InGaZnO、Ga2O3 和 ScN

基本信息

  • 批准号:
    1800139
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: The project explores the electronic and chemical properties of atomic-scale imperfections in the semiconductors zinc oxide, gallium oxide, indium gallium oxide, and scandium nitride with a specific focus on controlling such defects for higher power, speed, and light output of advanced electronic devices. Such defects may degrade semiconductor properties by trapping charge carriers to reduce the current and charge speed. These imperfections depend sensitively on the specific techniques used for growing and/or subsequent thermal, chemical, and plasma treatments. The research, which combines experimental studies with transport modeling, is aimed at measuring the optical properties of lattice structural and chemical imperfections of these relatively unexplored semiconductors, using growth variations, plasma, hydrogen annealing, and irradiation treatments to identify their physical nature and electrical measurements in magnetic fields to identify their ability to donate or accept electrons. The project ultimate goal is to understand the nature of these defects and eventually to eliminate them. The ability to remove these structural and/or chemical defects impacts a range of technologies. Zinc oxide is a prime candidate to replace today's high-cost materials in solar cells, digital displays, and light emitting diodes. Gallium oxide's ability to handle very high voltages can improve power switches for telecommunications and power transmission. Indium gallium oxide can provide higher speed displays and high-resolution TVs. Scandium nitride can lower resistance and power consumption of metallic contacts to semiconductors used in cellphones. The activities provide collaborative research opportunities for a graduate student, several university undergraduates, and high school students from an all-girl's high school.Technical description: The research focuses on fundamental studies of native point defects in the semiconductors ZnO, Ga2O3, InGaZnO, and ScN, which have emerged as critical materials for advanced high power and optoelectronic display applications. ZnO, doped with Ga or Al, is the prime candidate to replace expensive indium tin oxide in solar cells, displays, light emitting diodes, and touchscreens. Ga2O3 is the dominant new material for power switches because of its record high breakdown voltage. InGaZnO is the dominant amorphous oxide replacing amorphous-Si transistors in displays and high-resolution TVs (e.g., Sharp). ScN can improve ohmic contacts in GaN-based devices and serve as a buffer layer for GaN-on-Si technology. All four can be highly doped with impurity donors, yet all four are impacted by deep level defects that compensate free carriers and introduce scattering that reduces carrier mobility. The nature of native point defects in Ga2O3, InGaZnO, and ScN as well as ZnO is almost completely unexplored, yet these defects can have a major impact on carrier density, mobility, and interface transport. The research team will measure the spatial distribution and physical nature of specific defects using 3-dimensional nanoscale optical spectroscopies coupled with donor /acceptor densities and dielectric properties by temperature-dependent Hall effect and reflectance/transmission measurements, respectively, in order to identify and quantify defect densities on a near-nm scale and understand how to control them through new growth and processing techniques. The goals of this work are to understand the primary compensating defects in these compounds that limit degenerate doping and produce lower mobilities, combining near-surface remote plasma, implantation and thermal processing with optical and surface science techniques to identify these native point defects, correlate them with donor/acceptor densities, and chemically control them. The project also aims to explore the impact of these defects on barriers and transport at Schottky barriers and heterojunctions involving these semiconductors. The overall goal of the project is to control these defects and their impact on carrier densities and junction transport by selected growth and processing techniques that improve conductivity and interface properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目探索半导体氧化锌、氧化镓、氧化铟和氮化钪中原子级缺陷的电子和化学性质,重点是控制这些缺陷,以获得更高的功率、速度和先进电子设备的光输出。这种缺陷可能会通过捕获电荷载流子来降低电流和充电速度,从而降低半导体性能。这些缺陷在很大程度上取决于用于生长和/或随后的热、化学和等离子体处理的特定技术。这项研究将实验研究与输运模拟相结合,旨在测量这些相对未被探索的半导体的晶格结构和化学缺陷的光学性质,使用生长变化、等离子体、氢退火和辐照处理来确定它们的物理性质,并在磁场中进行电学测量,以确定它们提供或接受电子的能力。该项目的最终目标是了解这些缺陷的性质,并最终消除它们。消除这些结构和/或化学缺陷的能力影响了一系列技术。在太阳能电池、数字显示器和发光二极管中,氧化锌是取代当今高成本材料的主要候选者。氧化镓处理极高电压的能力可以改善电信和电力传输的电源开关。氧化铟镓可以提供更高速度的显示器和高分辨率电视。氮化钪可以降低手机中使用的半导体金属触点的电阻和功耗。该活动为一名研究生、几名大学本科生和一所女子高中的高中生提供了合作研究的机会。技术描述:研究重点是半导体中的本征点缺陷的基础研究,这些半导体已经成为先进的大功率和光电显示应用的关键材料。掺杂了Ga或Al的氧化锌是在太阳能电池、显示器、发光二极管和触摸屏中取代昂贵的铟锡氧化物的主要候选者。Ga2O_3以其创纪录的高击穿电压成为功率开关中占主导地位的新材料。在显示器和高分辨率电视(如夏普)中,InGaZnO是取代非晶硅晶体管的主要非晶氧化物。SCN可以改善GaN基器件中的欧姆接触,并作为GaN-on-Si技术的缓冲层。这四个都可以高度掺杂杂质施主,但所有四个都受到深能级缺陷的影响,这些缺陷补偿了自由载流子,并引入了降低载流子迁移率的散射。Ga2O3、InGaZnO、SCN以及氧化锌中的本征点缺陷的性质几乎完全未知,但这些缺陷可以对载流子密度、迁移率和界面输运产生重大影响。研究小组将使用三维纳米级光学光谱分别通过依赖温度的霍尔效应和反射/透射率测量来测量特定缺陷的空间分布和物理性质,并结合施主/受主密度和介电性质,以识别和量化近纳米尺度上的缺陷密度,并了解如何通过新的生长和处理技术来控制它们。这项工作的目标是了解这些化合物中限制简并掺杂和产生较低迁移率的主要补偿缺陷,将近表面远程等离子体、注入和热处理与光学和表面科学技术相结合,以识别这些本征点缺陷,将它们与施主/受主密度相关联,并进行化学控制。该项目还旨在探索这些缺陷对肖特基势垒和涉及这些半导体的异质结的势垒和传输的影响。该项目的总体目标是通过选定的生长和处理技术来控制这些缺陷及其对载流子密度和结传输的影响,以改善导电性和界面特性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Look其他文献

Electrical characterization and deep-level transient spectroscopy of Ge<sub>0.873</sub>Si<sub>0.104</sub>Sn<sub>0.023</sub> photodiode grown on Ge platform by ultra-high vacuum chemical vapor deposition
  • DOI:
    10.1016/j.tsf.2018.03.071
  • 发表时间:
    2018-05-31
  • 期刊:
  • 影响因子:
  • 作者:
    Buguo Wang;Z.-Q. Fang;Bruce Claflin;David Look;John Kouvetakis;Yung Kee Yeo
  • 通讯作者:
    Yung Kee Yeo

David Look的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
  • 批准号:
    2331003
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: An Effective and Efficient Low-Cost Alternate to Cell Aware Test Generation for Cell Internal Defects
协作研究:针对电池内部缺陷的电池感知测试生成有效且高效的低成本替代方案
  • 批准号:
    2331002
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Modulating Powder Bed Cohesion to Reduce Defects in Binder Jetting
合作研究:调节粉床内聚力以减少粘合剂喷射缺陷
  • 批准号:
    2223002
  • 财政年份:
    2021
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanoscale Heterostructures and Defects in Two-Dimensional Materials
合作研究:纳米级异质结构和二维材料缺陷
  • 批准号:
    2006456
  • 财政年份:
    2021
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nanoscale Heterostructures and Defects in Two-Dimensional Materials
合作研究:纳米级异质结构和二维材料缺陷
  • 批准号:
    2006446
  • 财政年份:
    2021
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modulating Powder Bed Cohesion to Reduce Defects in Binder Jetting
合作研究:调节粉床内聚力以减少粘合剂喷射缺陷
  • 批准号:
    1946724
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了