CAREER: Model Theory and Homogeneous Structures
职业:模型理论和齐次结构
基本信息
- 批准号:1848562
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Model theory is a branch of mathematical logic that studies combinatorial properties of mathematical structures (that is, sets equipped with certain operations). Since most mathematical objects can be represented as a structure, its subject matter is very broad and it interacts with several areas of mathematics. However, whereas other fields of mathematics are interested in specific structures, or classes of structures (for instance arithmetic studies the structure of the integers with addition and multiplication), model theory takes a step back and studies structures in general, looking for dividing lines and common properties. It singles out large classes of structures defined by combinatorial tameness conditions (which imply that the structure is in some sense not too complicated) and then attempts to understand the structures in those classes. One such class is that of NIP structures, which can be thought of as structures that have a geometric flavor. This class has received a lot of attention in the past decade. Another class is that of homogeneous structures, which are structures that have a lot of symmetries. Those are objects that belong to combinatorics and have been largely studied outside, or at the border of model theory. The main goal of this project is the investigation of new model-theoretic tools to understand homogeneous structures and in particular those that are NIP. There are few general theorems on homogeneous structures and at the same time no evidence that there cannot be any: we do not know how complicated homogeneous structures can be and this project hopes to shed light on this.The starting point of this project is the classification of the primitive rank 1 NIP homogeneous structures obtained by the PI. One goal is naturally to generalize this result to all finite rank NIP homogeneous structures. A more long-term goal is the classification of all NIP homogeneous structures. This would require understanding omega-categorical linear orders, which is an interesting project in its own right. A more general goal of the project is the development of model-theoretic tools to study homogeneous structures. This will build on the work mentioned above as well as on a previous work with Itay Kaplan on finitely generated dense subgroups of automorphism groups. Projects include finding model-theoretic consequences of the Ramsey property and clarifying its link with distality, finding necessary and sufficient conditions for admitting homogeneous expansions with nice properties (including having a stationary or canonical independence relation, being linearly ordered, Ramsey etc.). Finally, a more speculative project is the understanding of random-like behaviors in homogeneous structures and finding ways to measure the complexity of homogeneous structures, in particular those that lie outside the usual model-theoretic tame classes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型论是数理逻辑的一个分支,它研究数学结构(即具有某些运算的集合)的组合性质。由于大多数数学对象都可以表示为结构,因此它的主题非常广泛,并且与数学的几个领域相互作用。然而,其他数学领域对特定的结构或结构类感兴趣(例如算术研究加法和乘法的整数结构),模型论则后退一步,研究一般的结构,寻找分界线和共同性质。它挑出由组合驯服条件定义的大类结构(这意味着结构在某种意义上并不太复杂),然后试图理解这些类中的结构。其中一类是NIP结构,它可以被认为是具有几何风格的结构。这门课在过去的十年里受到了很多关注。另一类是同质结构,也就是有很多对称性的结构。这些都是属于组合学的对象,并且已经在外部或模型论的边界进行了大量研究。该项目的主要目标是研究新的模型理论工具,以了解均匀结构,特别是那些NIP。关于齐次结构的一般定理很少,同时也没有证据表明不可能有:我们不知道齐次结构有多复杂,本项目希望阐明这一点。本项目的出发点是由PI获得的原始秩1 NIP齐次结构的分类。一个目标自然是推广这一结果的所有有限秩NIP齐次结构。更长期的目标是对所有NIP均质结构进行分类。这需要理解欧米伽范畴线性序,这本身就是一个有趣的项目。该项目的一个更普遍的目标是开发模型理论工具来研究均匀结构。这将建立在上面提到的工作以及以前的工作与Itay Kaplan对生成稠密子群的自同构群。项目包括寻找Ramsey属性的模型理论后果,并澄清其与远端的联系,找到允许具有良好属性的齐次展开的必要和充分条件(包括具有固定或正则独立关系,线性有序,Ramsey等)。最后,一个更具投机性的项目是理解均匀结构中的类随机行为,并找到测量均匀结构复杂性的方法,特别是那些位于通常的模型理论驯服类之外的结构。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Model Checking on Interpretations of Classes of Bounded Local Cliquewidth
有界局部团宽度类解释的模型检查
- DOI:10.1145/3531130.3533367
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bonnet, Édouard;Dreier, Jan;Gajarský, Jakub;Kreutzer, Stephan;Mählmann, Nikolas;Simon, Pierre;Toruńczyk, Szymon
- 通讯作者:Toruńczyk, Szymon
Twin-width IV: ordered graphs and matrices
- DOI:10.1145/3519935.3520037
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:'Edouard Bonnet;Ugo Giocanti;P. D. Mendez;Pierre Simon;St'ephan Thomass'e;Szymon Toruńczyk
- 通讯作者:'Edouard Bonnet;Ugo Giocanti;P. D. Mendez;Pierre Simon;St'ephan Thomass'e;Szymon Toruńczyk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Scanlon其他文献
Dialysis After Left Ventricular Assist Device Implantation
- DOI:
10.1016/j.cardfail.2020.09.442 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Annie Tsay;Lori Ober;Behzad Soleimani;Robert Dowling;Jordan Shouey;Omaima Ali;Thomas Scanlon;Robert Oblender;Howard Joel Eisen - 通讯作者:
Howard Joel Eisen
Groupes définissables dans des expansions de théories stables Ampleur et notions relatives
理论稳定和相关概念扩展中的可定义群体
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Jordan;A. Martin;E. Bouscaren;David Evans;B. Poizat;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Public Key Cryptosystems Based on Drinfeld Modules Are Insecure
- DOI:
10.1007/s00145-001-0004-9 - 发表时间:
2001-04-09 - 期刊:
- 影响因子:2.200
- 作者:
Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algebraic equations on the adèlic closure of a Drinfeld module
- DOI:
10.1007/s11856-012-0072-6 - 发表时间:
2012-05-29 - 期刊:
- 影响因子:0.800
- 作者:
Dragos Ghioca;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algorithm for finding new identifiable reparametrizations of parametric ODEs
寻找参数常微分方程新的可识别重参数化的算法
- DOI:
10.48550/arxiv.2310.03057 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
N. Meshkat;Alexey Ovchinnikov;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Thomas Scanlon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Scanlon', 18)}}的其他基金
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
- 批准号:
2322918 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Algebraicity, Transcendence, and Decidability in Arithmetic and Geometry through Model Theory
通过模型理论研究算术和几何中的代数性、超越性和可判定性
- 批准号:
2201045 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760413 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
- 批准号:
1800492 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Conference/Workshop: Trimester on Model Theory, Combinatorics, and Valued Fields; Spring, 2018; Paris, France
会议/研讨会:模型理论、组合学和值域的三个学期;
- 批准号:
1744167 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Arithmetic and algebraic differentiation: Witt vectors, number theory, and differential algebra
算术和代数微分:维特向量、数论和微分代数
- 批准号:
1502219 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Model Theory, Difference/Differential Equations, and Applications
模型理论、差分/微分方程和应用
- 批准号:
1500920 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Model Theory of Generalized Differential Equations and Diophantine Geometry
广义微分方程模型论与丢番图几何
- 批准号:
1363372 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2246281 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Reconciling Model-Based and Learning-Based Imaging: Theory, Algorithms, and Applications
职业:协调基于模型和基于学习的成像:理论、算法和应用
- 批准号:
2043134 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Formulations, Theory, and Algorithms for Nonlinear Model Reduction in Transport-Dominated Systems
职业:传输主导系统中非线性模型简化的公式、理论和算法
- 批准号:
2046521 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2045400 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Model theory, measures and combinatorics
职业:模型理论、测量和组合学
- 批准号:
1651321 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Model Theory and Operator Algebras
职业:模型理论和算子代数
- 批准号:
1708802 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Model Theory and Operator Algebras
职业:模型理论和算子代数
- 批准号:
1349399 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Strange Metal Properties and Superconductvity in Heavy Fermion Materials: Realistic Band Theory Meets Model Hamiltonian Approach
职业:重费米子材料中的奇怪金属特性和超导性:现实能带理论与模型哈密顿方法的结合
- 批准号:
1350237 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant














{{item.name}}会员




