Algebraic Model Theory
代数模型理论
基本信息
- 批准号:1001550
- 负责人:
- 金额:$ 36.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scanlon will study the theory of difference and differential equations through the vantage of mathematical logic and to apply the results of these investigations to fundamental problems in arithmetic and geometry.More specifically, he will develop a unified approach to the logical theory of difference and differential fields and to resolve deep structural questions about difference-differential equations through a general theory of linearization via jet and arc spaces giving a precise sense to which all geometric complexity of nonlinear equations actually reflects the complexity of associated linear equations. Scanlon will study Galois theory, or the theory of symmetries, of general systems of equations involving operators by employing this process of linearization, the logical theory of liaison groups, and a Tannakian formalism. In addition, he will address specific questions about algebraic relations on special points by using the fine structure theory for definable sets in difference fields as well as the model theory of valued fields and of real geometry via the theory of o-minimality. Finally, Scanlon will develop the model theory of the theory of the Witt vectors with analytic structure and the relative Frobenius. Scanlon will use this theory both as a proving ground for the general theory of metastability and as a logically tame theory in which arithmetic problems may be encoded believing that this theory may ground a new theory of motivic integration in which finite dimensional difference varieties play the role of algebraic varieties. Scanlon will develop a model theory of p-jets independent of the prime p from which uniformities in number theoretic problems may be deduced.Model theory, in the sense of mathematical logic, gives a unifying perspective for studying questions in disparate branches of mathematics as instances of a general theory. For example, it may ground fanciful, but suggestive, theories in which techniques appropriate to the study of geometry and differential equations are transposed to investigate numbers. In the opposite direction, its very general methods for understanding symmetries of structures and more importantly symmetries of one part of a structure relative to another part when specialized to concrete mathematical questions about differential and difference equations reveal otherwise unknown theories of symmetries. With this project, Scanlon will explore the underlying unity of mathematics as seen from mathematical logic from the theories of differential equations, to dynamical systems, to number theory.
Scanlon将通过数理逻辑的Vantage研究差分和微分方程的理论,并将这些研究的结果应用于算术和几何的基本问题。他将制定一个统一的方法,差异和微分场的逻辑理论,并解决有关差异的深层结构问题-微分方程通过一般理论的线性化,通过射流和弧空间给出了一个精确的意义,所有几何复杂性的非线性方程实际上反映了复杂性的相关线性方程。斯坎伦将研究伽罗瓦理论,或理论的对称性,一般系统的方程涉及运营商采用这一进程的线性化,逻辑理论的联络组,和一个Tannakian形式主义。 此外,他将解决具体问题的代数关系的特殊点,利用精细结构理论的可定义集在不同领域以及模型理论的价值领域和真实的几何通过理论的o-极小。 最后,斯坎伦将发展具有解析结构的维特向量理论和相关的弗罗贝纽斯理论的模型理论。 斯坎伦将使用这一理论既作为一个试验场的一般理论的亚稳定性和作为一个逻辑驯服的理论,其中算术问题可能会编码相信,这一理论可能会地面一个新的理论motivic整合,其中有限维差异品种发挥作用的代数品种。斯坎伦将制定一个模型理论的p-喷气机独立的素数p从中均匀性数论问题可能推导出。模型理论,在数理逻辑的意义上,提供了一个统一的角度来研究问题的不同分支的数学作为实例的一般理论。例如,它可能是幻想的基础,但暗示,理论中的技术适用于几何和微分方程的研究转来研究数字。 在相反的方向,它的非常一般的方法来理解对称性的结构,更重要的是对称性的一个部分的结构相对于另一个部分时,专门用于具体的数学问题,微分方程和差分方程揭示了其他未知的对称性理论。 通过这个项目,斯坎伦将探索数学的基本统一性,从微分方程理论的数学逻辑,到动力系统,再到数论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Scanlon其他文献
Dialysis After Left Ventricular Assist Device Implantation
- DOI:
10.1016/j.cardfail.2020.09.442 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Annie Tsay;Lori Ober;Behzad Soleimani;Robert Dowling;Jordan Shouey;Omaima Ali;Thomas Scanlon;Robert Oblender;Howard Joel Eisen - 通讯作者:
Howard Joel Eisen
Groupes définissables dans des expansions de théories stables Ampleur et notions relatives
理论稳定和相关概念扩展中的可定义群体
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Jordan;A. Martin;E. Bouscaren;David Evans;B. Poizat;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Public Key Cryptosystems Based on Drinfeld Modules Are Insecure
- DOI:
10.1007/s00145-001-0004-9 - 发表时间:
2001-04-09 - 期刊:
- 影响因子:2.200
- 作者:
Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algebraic equations on the adèlic closure of a Drinfeld module
- DOI:
10.1007/s11856-012-0072-6 - 发表时间:
2012-05-29 - 期刊:
- 影响因子:0.800
- 作者:
Dragos Ghioca;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algorithm for finding new identifiable reparametrizations of parametric ODEs
寻找参数常微分方程新的可识别重参数化的算法
- DOI:
10.48550/arxiv.2310.03057 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
N. Meshkat;Alexey Ovchinnikov;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Thomas Scanlon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Scanlon', 18)}}的其他基金
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
- 批准号:
2322918 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Algebraicity, Transcendence, and Decidability in Arithmetic and Geometry through Model Theory
通过模型理论研究算术和几何中的代数性、超越性和可判定性
- 批准号:
2201045 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Continuing Grant
CAREER: Model Theory and Homogeneous Structures
职业:模型理论和齐次结构
- 批准号:
1848562 - 财政年份:2019
- 资助金额:
$ 36.81万 - 项目类别:
Continuing Grant
From Permutation Groups to Model Theory
从置换群到模型论
- 批准号:
1824208 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760413 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
- 批准号:
1800492 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Continuing Grant
Conference/Workshop: Trimester on Model Theory, Combinatorics, and Valued Fields; Spring, 2018; Paris, France
会议/研讨会:模型理论、组合学和值域的三个学期;
- 批准号:
1744167 - 财政年份:2017
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Arithmetic and algebraic differentiation: Witt vectors, number theory, and differential algebra
算术和代数微分:维特向量、数论和微分代数
- 批准号:
1502219 - 财政年份:2015
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Model Theory, Difference/Differential Equations, and Applications
模型理论、差分/微分方程和应用
- 批准号:
1500920 - 财政年份:2015
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Model Theory of Generalized Differential Equations and Diophantine Geometry
广义微分方程模型论与丢番图几何
- 批准号:
1363372 - 财政年份:2014
- 资助金额:
$ 36.81万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 36.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
- 批准号:
1800492 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Continuing Grant
Model Theory and Combinatorial Geometry, Algebraic and O-Minimal Flows.
模型理论和组合几何、代数和 O 最小流。
- 批准号:
1800806 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Continuing Grant
Algebraic Methods in Finite Model Theory
有限模型理论中的代数方法
- 批准号:
324066354 - 财政年份:2016
- 资助金额:
$ 36.81万 - 项目类别:
Research Fellowships
Difference between marginal likelihood and generalization error as statistical model evaluation based on algebraic geometry and structure learning theory
基于代数几何和结构学习理论的边际似然与泛化误差差异作为统计模型评价
- 批准号:
15K00331 - 财政年份:2015
- 资助金额:
$ 36.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model theory and real and p-adic algebraic geometry
模型理论与实数和p进代数几何
- 批准号:
480584-2015 - 财政年份:2015
- 资助金额:
$ 36.81万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative research: model theory and algebraic geometry in groups and algebras, non-standard actions, algorithmic problems
合作研究:群和代数中的模型理论和代数几何、非标准动作、算法问题
- 批准号:
1201550 - 财政年份:2012
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative research: model theory and algebraic geometry in groups and algebras, non-standard actions, algorithmic problems
合作研究:群和代数中的模型理论和代数几何、非标准动作、算法问题
- 批准号:
1201379 - 财政年份:2012
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Applications of minimal model theory to higher dimensional affine algebraic geometry
最小模型理论在高维仿射代数几何中的应用
- 批准号:
24740003 - 财政年份:2012
- 资助金额:
$ 36.81万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Theory and practice for inference of high dimensional statistical model with computational algebraic geometry.
用计算代数几何推理高维统计模型的理论与实践。
- 批准号:
22500252 - 财政年份:2010
- 资助金额:
$ 36.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)