Bijective Approach to Discrete Geometries
离散几何的双射方法
基本信息
- 批准号:1800681
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combinatorics is a central branch of mathematics concerned with the description and analysis of discrete data structures. Combinatorialists try to uncover patterns and building blocks in such structures, in order to explain their global behavior. Combinatorial tools are therefore of central importance in many other fields of science, such as computer science, statistical mechanics, statistics, and probability. This project focuses on the encoding of several discrete geometrical structures (planar graphs, polytopal decompositions of space, etc.) by simpler mathematical structures. Such an encoding, which provides a genuinely different description of the same structures, can greatly simplify the analysis of the objects under consideration. Indeed, certain patterns and probabilistic behavior which were hidden in the original description, may appear more clearly in the alternative description.This projects aims to develop bijective tools in order to solve several fundamental open problems in combinatorics, with motivations coming from probability, theoretical physics, and computer science. One of the major goals is to set the foundation for a multi-authored proof of a deep relation between three very important probabilistic constructions: random planar graphs, the Gaussian free field, and SLE curves. The proof will be built upon a bijective encoding of percolation-endowed planar triangulations by some two-dimensional lattice walks. Other goals of this project are related to proper coloring of graphs (explaining bijectively a counting formula for properly colored planar graphs), integrable system approach to the symmetric group ("diagonalizing" the KP differential equations governing the factorizations in the symmetric group), hyperplane arrangements (bijections for the faces of the deformations of the Coxeter arrangement), and graph drawing algorithms (simultaneous generalization of Schnyder woods and transversal structures).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组合数学是数学的一个中心分支,主要研究离散数据结构的描述和分析。组合主义者试图揭示这种结构中的模式和积木,以解释它们的全局行为。因此,组合工具在许多其他科学领域,如计算机科学、统计力学、统计学和概率论中具有核心重要性。这个项目的重点是编码的几个离散的几何结构(平面图,多面体分解的空间等)。更简单的数学结构。这样的编码,它提供了一个真正不同的描述相同的结构,可以大大简化分析对象的考虑。实际上,隐藏在原始描述中的某些模式和概率行为可能在替代描述中更清楚地出现。该项目旨在开发双射工具,以解决组合学中的几个基本开放问题,其动机来自概率,理论物理和计算机科学。其中一个主要目标是为三个非常重要的概率结构之间的深层关系的多作者证明奠定基础:随机平面图,高斯自由场和SLE曲线。证明将建立在一个双射编码的双射赋予的平面三角剖分的一些二维格行走。这个项目的其他目标与图的适当着色有关(用双射解释恰当着色平面图的一个计数公式),对称群的可积系统方法(“对角化”KP微分方程支配对称群中的因式分解),超平面安排(Coxeter布置的变形的面的双射),和图形绘制算法(Schnyder woods和transverse structures的同时推广)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function
- DOI:10.1016/j.disc.2020.111989
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:O. Bernardi;Philippe Nadeau
- 通讯作者:O. Bernardi;Philippe Nadeau
Unified bijections for planar hypermaps with general cycle-length constraints
具有一般周期长度约束的平面超图的统一双射
- DOI:10.4171/aihpd/82
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bernardi, Olivier;Fusy, Éric
- 通讯作者:Fusy, Éric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Bernardi其他文献
Growth constants of minor-closed classes of graphs
- DOI:
10.1016/j.jctb.2010.03.001 - 发表时间:
2010-09-01 - 期刊:
- 影响因子:
- 作者:
Olivier Bernardi;Marc Noy;Dominic Welsh - 通讯作者:
Dominic Welsh
On Triangulations with High Vertex Degree
- DOI:
10.1007/s00026-008-0334-5 - 发表时间:
2008-04-27 - 期刊:
- 影响因子:0.700
- 作者:
Olivier Bernardi - 通讯作者:
Olivier Bernardi
Counting quadrant walks via Tutte's invariant method (extended abstract)
通过图特不变法计算象限行走(扩展摘要)
- DOI:
10.46298/dmtcs.6416 - 发表时间:
2015 - 期刊:
- 影响因子:0.7
- 作者:
Olivier Bernardi;Mireille Bousquet;K. Raschel - 通讯作者:
K. Raschel
Olivier Bernardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Bernardi', 18)}}的其他基金
Bijective Combinatorics for Geometrical Structures
几何结构的双射组合
- 批准号:
2154242 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Bijective Combinatorics of Maps: Beyond Boundaries
地图的双射组合:超越边界
- 批准号:
1308441 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Bijective Combinatorics of Maps: Beyond Boundaries
地图的双射组合:超越边界
- 批准号:
1068626 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
- 批准号:
22KJ0717 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
- 批准号:
23K03192 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SHF: Small: A New Approach for Hardware Design of High-Precision Discrete Gaussian Sampling
SHF:小:高精度离散高斯采样硬件设计的新方法
- 批准号:
2146881 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
A novel hybrid finite-discrete element modeling approach to assess the impact of drilling-induced core damage on laboratory properties of hard brittle rocks
一种新颖的混合有限离散元建模方法,用于评估钻井引起的岩心损伤对硬脆性岩石实验室特性的影响
- 批准号:
580759-2022 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Alliance Grants
Auction design for two-sided markets: an approach from discrete optimization
双边市场的拍卖设计:离散优化方法
- 批准号:
21K19759 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Discrete Differential Geometry Approach to Kinematics and Shape Feedback Control for Surface Robots
表面机器人运动学和形状反馈控制的离散微分几何方法
- 批准号:
21K14127 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel approach to integrability of semi-discrete systems
半离散系统可积性的新方法
- 批准号:
EP/V050451/1 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Research Grant
A theoretical analysis of markets with indivisible commodities: An approach from discrete mathematics
不可分割商品市场的理论分析:离散数学方法
- 批准号:
20K13458 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Principled Approach to Reasoning about Discrete Dynamic Systems
离散动态系统推理的原则方法
- 批准号:
RGPIN-2015-05265 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
- 批准号:
18K11177 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)