Exponential Periods, Bispectrality and Affine Quantum Groups
指数周期、双谱性和仿射量子群
基本信息
- 批准号:1802412
- 负责人:
- 金额:$ 28.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of symmetry is a basic paradigm in science, with fundamental consequences for crystallography, particle physics, general relativity, quantum computing and signal processing. The study of the (bilateral, translation, rotational, scaling and other) symmetries of a given chemical, physical or mathematical system is often key to its understanding, and ultimate solution, since their presence greatly constrains the system. Quantum groups are deformations of the most basic symmetries of Nature. They were discovered in the 1980s as symmetries of one and two-dimensional statistical mechanical models that describe, for example, thin layers of ice. Quantum groups have re-emerged very recently as the symmetries of four-dimensional gauge theories that describe the interaction of elementary particles such as quarks. Quantum groups form a hierarchy that depends on the strength of the deformation and their dependence on a spectral parameter: constant, rational, trigonometric or elliptic. As the hierarchical level rises, an interesting trade-off occurs: some of the structure becomes far more intricate, while some simplifies radically. This project will further uncover relations that exist between different members of the hierarchy by building conceptual bridges between them. These conceptual bridges will have fundamental consequences for the quantum groups they link. On the one hand, they will give a radically simpler description of the multivaluedness of the differential or difference equations for one quantum group in terms of its hierarchical superior. On the other, they will give a self-contained description of the latter in terms of the former which, in addition to clarifying its structure, has potentially far reaching arithmetic consequences. More precisely, the present project will explore the relations between affine quantum groups. One main theme of the project is to extend the description of the monodromy of the rational Casimir connection of a symmetrisable Kac-Moody algebra, in terms of quantum Weyl group operators, to numerical values of the deformation parameter, and to the difference analogue of the connection. The second main theme of the project is to use the meromorphic tensor equivalence of finite dimensional representations of Yangians and quantum loop algebras, and of quantum loop algebras and elliptic quantum groups, to compute the monodromy of the trigonomeric Casimir connection and of the rational and trigonometric qKZ equations, thus proving the difference analog of the Drinfeld-Kohno theorem conjectured by Frenkel and Reshetikhin.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性的研究是科学中的一个基本范式,对晶体学、粒子物理学、广义相对论、量子计算和信号处理都有重要影响。研究一个特定的化学、物理或数学系统的(双边、平移、旋转、缩放和其他)对称性通常是理解和最终解决方案的关键,因为它们的存在极大地限制了系统。量子群是自然界最基本对称性的变形。它们是在20世纪80年代被发现的,作为描述例如薄冰层的一维和二维统计力学模型的对称性。量子群最近重新出现,作为描述夸克等基本粒子相互作用的四维规范理论的对称性。量子群形成了一个等级,它取决于变形的强度和它们对谱参数的依赖性:常数,有理,三角或椭圆。随着层次结构的上升,会发生一个有趣的权衡:一些结构变得更加复杂,而另一些结构则从根本上简化。这个项目将进一步揭示存在于层次结构的不同成员之间的关系,通过在它们之间建立概念桥梁。这些概念桥梁将对它们所连接的量子群产生根本性的影响。一方面,他们将根据一个量子群的等级上级,对微分或差分方程的多值性给出一个极其简单的描述。另一方面,他们将根据前者对后者进行自成一体的描述,除了澄清其结构外,还可能产生深远的算术后果。更确切地说,本项目将探索仿射量子群之间的关系。该项目的一个主要主题是扩展描述的单值的合理卡西米尔连接的对称性卡茨-穆迪代数,在量子Weyl群运营商,数值的变形参数,和差异模拟的连接。该项目的第二个主题是使用Yangians和量子圈代数以及量子圈代数和椭圆量子群的有限维表示的亚纯张量等价,来计算三角Casimir连接以及有理和三角qKZ方程的单值性,因此证明了德林费尔德的差分类似物该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stokes phenomena, Poisson–Lie groups and quantum groups
斯托克斯现象、泊松李群和量子群
- DOI:10.1016/j.aim.2023.109189
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Toledano Laredo, Valerio;Xu, Xiaomeng
- 通讯作者:Xu, Xiaomeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerio Toledano Laredo其他文献
Valerio Toledano Laredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerio Toledano Laredo', 18)}}的其他基金
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
- 批准号:
2302568 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Continuing Grant
RTG: Algebraic Geometry and Representation Theory
RTG:代数几何和表示论
- 批准号:
1645877 - 财政年份:2017
- 资助金额:
$ 28.51万 - 项目类别:
Continuing Grant
Monodromy Theorems, Affine Quantum Groups, and Meromorphic Tensor Categories
单向定理、仿射量子群和亚纯张量范畴
- 批准号:
1505305 - 财政年份:2015
- 资助金额:
$ 28.51万 - 项目类别:
Standard Grant
Casimir connections, Yangians and quantum loop algebras
卡西米尔连接、Yangians 和量子环代数
- 批准号:
1206305 - 财政年份:2012
- 资助金额:
$ 28.51万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0854792 - 财政年份:2009
- 资助金额:
$ 28.51万 - 项目类别:
Continuing Grant
Flat Connections, Irregular Singularities and Quantum Groups
平面连接、不规则奇点和量子群
- 批准号:
0707212 - 财政年份:2007
- 资助金额:
$ 28.51万 - 项目类别:
Continuing Grant
相似海外基金
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V006630/1 - 财政年份:2024
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V007289/1 - 财政年份:2024
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V006509/1 - 财政年份:2024
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
- 批准号:
NE/V006517/1 - 财政年份:2024
- 资助金额:
$ 28.51万 - 项目类别:
Research Grant
Assessing Amazon forest vulnerability and resilience to dry periods across soil moisture and microenvironmental gradients
评估亚马逊森林在土壤湿度和微环境梯度下的干旱期脆弱性和恢复能力
- 批准号:
2882399 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Studentship
A Study of Iconography on Christianity in the Late Meiji and Taisho Periods.
明治末大正时期基督教图像学研究。
- 批准号:
23KJ1545 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
- 批准号:
23KJ0801 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A Local Historical Study of Adult and Community Education Concerned with Social Work in the Taisho and Early Showa Periods
大正和昭和初期与社会工作有关的成人和社区教育的地方历史研究
- 批准号:
23K02082 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sensitive periods for prenatal alcohol exposure: a longitudinal study of DNA methylation and subsequent mental health
产前酒精暴露的敏感期:DNA 甲基化和随后心理健康的纵向研究
- 批准号:
10573715 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
- 批准号:
2315613 - 财政年份:2023
- 资助金额:
$ 28.51万 - 项目类别:
Standard Grant