Monodromy Theorems, Affine Quantum Groups, and Meromorphic Tensor Categories

单向定理、仿射量子群和亚纯张量范畴

基本信息

  • 批准号:
    1505305
  • 负责人:
  • 金额:
    $ 16.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Quantum groups are deformations of the most basic symmetries in nature. They were discovered in the mid-eighties as symmetries of one- and two-dimensional statistical mechanical models describing, for example, thin layers of ice. Amazingly, quantum groups have recently arisen as the symmetries of four-dimensional gauge theories, which describe the interaction of elementary particles such as quarks, and their five- and six-dimensional generalizations, as well as the constraints of a class of counting problems in geometry. Braid groups are another pervasive class of symmetries that arise in the mathematical study of knots, the analysis of three-dimensional shapes, the statistics of elementary particles constrained to move in two dimensions, and quantum computing. Because the presence of symmetries greatly constrains these systems, the mathematical study of the intrinsic and extrinsic structures of their groups of symmetries is key in understanding their physical and mathematical properties. This research project will lead to a deeper understanding of the relationship between the quantum groups corresponding to the plane, the sphere, and the torus. These have been traditionally thought to sit on distinct rungs in a ladder of increasing complexity. Research in progress is uncovering the striking fact that these quantum groups are, in fact, equivalent. Such equivalences are interesting in themselves, but they also allow precise characterization of the appearance of braid groups in disparate mathematical and physical contexts. This research project centers on infinite-dimensional quantum groups associated to one-dimensional algebraic groups: Yangians, quantum loop algebras, and elliptic curves. The project builds on the equivalence of finite-dimensional representations of Yangians and quantum loop algebras. The PI and collaborators will promote this equivalence of finite-dimensional algebras to an equivalence between infinite-dimensional quantum loop algebras and elliptic quantum groups, thereby elucidating the structure of the latter, which is still little understood outside type A. These equivalences may be thought of as q-deformed, meromorphic versions of the Kazhdan-Lusztig equivalence between affine Lie algebras and finite-dimensional quantum groups. A key aspect of this project is the study of the meromorphic braided categories of representations of these affine quantum groups, which provides new examples of such categories. Using the newly derived equivalence, the monodromy of rational affine, trigonometric, and elliptic Casimir connections will be computed in terms of quantum Weyl group operators in a way reminiscent of the Kohno-Drinfeld quantum group. This research will have applications to Yangians, quantum loop algebras and elliptic quantum groups, quantum integrable systems, and questions in enumerative geometry.
量子群是自然界中最基本对称性的变形。它们是在80年代中期被发现的,作为描述例如薄冰层的一维和二维统计力学模型的对称性。令人惊讶的是,量子群最近作为四维规范理论的对称性出现,它描述了夸克等基本粒子的相互作用,以及它们的五维和六维推广,以及几何中一类计数问题的约束。辫群是另一类普遍存在的对称性,它出现在结的数学研究、三维形状的分析、二维运动基本粒子的统计和量子计算中。由于对称性的存在极大地限制了这些系统,因此对它们的对称群的内在和外在结构的数学研究是理解它们的物理和数学性质的关键。该研究项目将导致更深入地理解对应于平面、球面和环面的量子群之间的关系。传统上,人们一直认为,在一个日益复杂的阶梯上,这些因素处于不同的梯级上。正在进行的研究揭示了一个惊人的事实,即这些量子群实际上是等价的。这种等价性本身就很有趣,但它们也允许在完全不同的数学和物理背景下精确描述辫子群的外观。这个研究项目的中心是与一维代数群相关的无限维量子群:Yangians,量子圈代数和椭圆曲线。该项目建立在Yangians和量子回路代数的有限维表示的等价性之上。PI和合作者将把有限维代数的这种等价推广到无限维量子圈代数和椭圆量子群之间的等价,从而阐明后者的结构,这在类型A之外仍然很少被理解。这些等价可以被认为是仿射李代数和有限维量子群之间的Kazhdan-Lusztig等价的q-变形的亚纯版本。该项目的一个关键方面是研究这些仿射量子群表示的亚纯编织范畴,这为此类范畴提供了新的例子。使用新导出的等价性,有理仿射、三角和椭圆Casimir连接的单值性将以量子Weyl群算子的方式计算,让人想起Kohno-Drinfeld量子群。这项研究将应用到杨吉亚,量子圈代数和椭圆量子群,量子可积系统,以及枚举几何中的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valerio Toledano Laredo其他文献

Valerio Toledano Laredo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valerio Toledano Laredo', 18)}}的其他基金

Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
  • 批准号:
    2302568
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Exponential Periods, Bispectrality and Affine Quantum Groups
指数周期、双谱性和仿射量子群
  • 批准号:
    1802412
  • 财政年份:
    2018
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
RTG: Algebraic Geometry and Representation Theory
RTG:代数几何和表示论
  • 批准号:
    1645877
  • 财政年份:
    2017
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Casimir connections, Yangians and quantum loop algebras
卡西米尔连接、Yangians 和量子环代数
  • 批准号:
    1206305
  • 财政年份:
    2012
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
  • 批准号:
    0854792
  • 财政年份:
    2009
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Flat Connections, Irregular Singularities and Quantum Groups
平面连接、不规则奇点和量子群
  • 批准号:
    0707212
  • 财政年份:
    2007
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
  • 批准号:
    2336239
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
  • 批准号:
    23K12978
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
  • 批准号:
    2247382
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
  • 批准号:
    23K12986
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
  • 批准号:
    2240063
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
  • 批准号:
    23KJ0673
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Limit Theorems in Dynamical Systems
动力系统中的极限定理
  • 批准号:
    2246983
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了