Casimir connections, Yangians and quantum loop algebras
卡西米尔连接、Yangians 和量子环代数
基本信息
- 批准号:1206305
- 负责人:
- 金额:$ 14.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum groups were discovered in the mid--eighties as symmetries of 1 and 2-dimensional Statistical Mechanical models. After a period of intense development, they reemerged more recently as the symmetries of 4-dimensional supersymmetric quantum gauge theories, through the work of Nekrasov--Shatashvilii, and as the constraints governing the enumerative geometry of Nakajima quiver varieties, through the work of Maulik-Okounkov. The present proposal bears upon two such infinite-dimensional quantum groups which are associated to a complex semisimple Lie algebra: the Yangian and the quantum loop algebra. An important component of the proposal is joint between the PI and S. Gautam, and builds upon a precise link they recently discovered between these quantum groups. It endeavors on the one hand to promote the above link to an equivalence between categories of finite-dimensional representations and, on the other, to use this equivalence to compute the monodromy the trigonometric Casimir connection of the Yangian in terms of the quantum Weyl group operators of the quantum loop algebra, in a way reminiscent of the Kohno--Drinfeld theorem. The proposal has potential implications for the representation theory of Yangians and quantum loop algebras, quantum integrable systems and enumerative geometry.Quantum groups are deformations of the most basic symmetries of Nature. They were discovered in the mid-eighties as symmetries of 1 and 2-dimensional statistical mechanical models and, amazingly, reemerged recently as the symmetries of 4-dimensional quantum gauge theories, as well as the constraints of a class of enumerative problems in geometry. The mathematical study of their intrinsic and extrinsic structures is often key in understanding, and solving, the physical and mathematical systems they govern, since the presence of these symmetries greatly constrains these systems. The goal of this project is to better understand the relationship between two such classes of infinite-dimensional quantum groups, and to use this relation to describe the evolution of the systems governed by the first as some of its physical parameters (masses for example) are tuned, in terms of the second.
量子群是在80年代中期作为1维和2维统计力学模型的对称性被发现的。经过一段时间的激烈发展,他们重新出现最近作为四维超对称量子规范理论的对称性,通过工作的Nekrasov-Shatashvilii,并作为约束管理枚举几何的Nakajima的变种,通过工作的Maulik-Okounkov。目前的建议承担两个这样的无限维量子群,这是一个复杂的半单李代数:杨和量子回路代数。该提案的一个重要组成部分是PI和S之间的联合。Gautam,并建立在他们最近发现的这些量子群之间的精确联系之上。它一方面努力促进上述联系之间的等价类别的有限维表示,另一方面,使用这种等价计算单值三角卡西米尔连接的杨在量子Weyl群运营商的量子圈代数,在某种程度上让人想起Kohno-德林费尔德定理。这个提议对杨格群的表示理论、量子圈代数、量子可积系统和计数几何都有潜在的意义。量子群是自然界最基本对称性的变形。它们在80年代中期作为1维和2维统计力学模型的对称性被发现,令人惊讶的是,它们最近作为4维量子规范理论的对称性以及一类几何计数问题的约束重新出现。对它们的内在和外在结构的数学研究通常是理解和解决它们所支配的物理和数学系统的关键,因为这些对称性的存在极大地限制了这些系统。该项目的目标是更好地理解两类无限维量子群之间的关系,并使用这种关系来描述由第一类量子群控制的系统的演化,因为它的一些物理参数(例如质量)是根据第二类量子群调整的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerio Toledano Laredo其他文献
Valerio Toledano Laredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerio Toledano Laredo', 18)}}的其他基金
Transcendental fiber functors, shift of argument algebras and Riemann-Hilbert correspondence for q-difference equations
q 差分方程的超越纤维函子、变元代数平移和黎曼-希尔伯特对应
- 批准号:
2302568 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
Continuing Grant
Exponential Periods, Bispectrality and Affine Quantum Groups
指数周期、双谱性和仿射量子群
- 批准号:
1802412 - 财政年份:2018
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
RTG: Algebraic Geometry and Representation Theory
RTG:代数几何和表示论
- 批准号:
1645877 - 财政年份:2017
- 资助金额:
$ 14.14万 - 项目类别:
Continuing Grant
Monodromy Theorems, Affine Quantum Groups, and Meromorphic Tensor Categories
单向定理、仿射量子群和亚纯张量范畴
- 批准号:
1505305 - 财政年份:2015
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0854792 - 财政年份:2009
- 资助金额:
$ 14.14万 - 项目类别:
Continuing Grant
Flat Connections, Irregular Singularities and Quantum Groups
平面连接、不规则奇点和量子群
- 批准号:
0707212 - 财政年份:2007
- 资助金额:
$ 14.14万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350344 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Dissecting Claustrum Neuronal Connections for Sleepiness
剖析幽状体神经元与睡意的连接
- 批准号:
24K09680 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
- 批准号:
2350250 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350343 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402572 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402571 - 财政年份:2024
- 资助金额:
$ 14.14万 - 项目类别:
Standard Grant
Exploring Intergenerational Social Connections Among Gay, Bisexual, And Other Men Who Have Sex with Men as A Social Prescription for Building Resilience Against Syndemic Sexually Transmitted and Blood Born Infections
探索同性恋、双性恋和其他男男性行为者之间的代际社会联系,作为增强抵抗综合症性传播和血源性感染的能力的社会处方
- 批准号:
487992 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
Operating Grants
Automatic Estimation of Connections among Citizens Using Urban Tweet Data and its Social Application
利用城市推文数据自动估计公民之间的联系及其社交应用
- 批准号:
23H03686 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Connections between sound composition and visual art through the transformation of sound material into 3D objects and sonic spaces
通过将声音材料转换为 3D 对象和声音空间,声音创作与视觉艺术之间的联系
- 批准号:
2893455 - 财政年份:2023
- 资助金额:
$ 14.14万 - 项目类别:
Studentship