Vertex Operator Algebras, Number Theory, and Related Topics
顶点算子代数、数论及相关主题
基本信息
- 批准号:1802478
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Vertex operator algebras, number theory, and related topics" will be held at California State University, Sacramento from June 11-15th, 2018. The conference is designed to bring together a diverse international pool of researchers with expertise in algebra, number theory, and conformal field theory in theoretical physics to discuss a variety of topics related to the intersection of these fields. In particular, a wide range of junior and senior researchers from varying institutions will disseminate recent work, discuss the current state of intersection among their fields, exchange ideas on common problems, and form new collaborations. The conference will focus on two main objectives. First, the dissemination of recent and developing research trends within the focused research areas of number theory, vertex operator algebras (VOAs), and their intersection will help advance the mathematical sciences, allow researchers to stay up to date with developments in the field, and allow participants to form new connections among different research areas. Second, the conference aims to help train and develop young and diverse scientists in the mathematical and physical sciences, while introducing them to new ideas and the international community. Presentations by senior scientists will aid in this process.The conference will include forty research presentations covering a range of topics related to the intersection of vertex operator algebras, number theory, and conformal field theory. This will include topics such as group theory, Lie algebras, modular and other automorphic forms, quantum groups, representation theory, tensor category theory, and theoretical physics, as well as applications and intersections of these areas. Due to the rapidly changing landscape of these mathematical fields, and their intersection with theoretical physics, this conference serves as a timely and important opportunity for the research community to share and disseminate knowledge in order to advance new research developments. An important theme that will be highlighted is the interplay between the theory of VOAs and automorphic forms. The presentations will be chronicled on the conference website. The conference webpage is http://www.csus.edu/math/2018conf.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“顶点算子代数,数论,及相关主题”将于2018年6月11日至15日在加州州立大学,萨克拉门托举行。该会议旨在汇集具有代数,数论和理论物理中的共形场论专业知识的各种国际研究人员,讨论与这些领域交叉相关的各种主题。特别是,来自不同机构的各种初级和高级研究人员将传播最近的工作,讨论各自领域之间的交叉现状,就共同问题交换意见,并形成新的合作。会议将集中讨论两个主要目标。首先,在数论,顶点算子代数(VOA)及其交叉的重点研究领域内传播最近和发展中的研究趋势将有助于推进数学科学,使研究人员能够跟上该领域的发展,并使参与者能够在不同的研究领域之间形成新的联系。 第二,会议旨在帮助培养和发展数学和物理科学领域的年轻和多样化的科学家,同时向他们介绍新思想和国际社会。资深科学家的演讲将有助于这一过程。会议将包括40个研究报告,涵盖了一系列与顶点算子代数,数论和共形场论的交叉相关的主题。这将包括主题,如群论,李代数,模块和其他自守形式,量子群,表示论,张量范畴理论和理论物理,以及这些领域的应用和交叉点。由于这些数学领域的快速变化,以及它们与理论物理的交叉,本次会议为研究界提供了一个及时而重要的机会,分享和传播知识,以推动新的研究发展。一个重要的主题,将强调的是VOA和自守形式的理论之间的相互作用。演讲将在会议网站上记录。会议网页是http://www.csus.edu/math/2018conf.This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Krauel其他文献
One-point theta functions for vertex operator algebras
- DOI:
10.1016/j.jalgebra.2017.02.026 - 发表时间:
2016-12 - 期刊:
- 影响因子:0
- 作者:
Matthew Krauel - 通讯作者:
Matthew Krauel
Decompositions of index one Jacobi forms into $N=4$ characters and formulas for mock modular forms
将索引一雅可比形式分解为 $N=4$ 个字符和模拟模块化形式的公式
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Matthew Krauel;G. Mason;M. Tuite;G. Yamskulna - 通讯作者:
G. Yamskulna
Assessing student success in a Peer Assisted Learning program using propensity score matching
使用倾向评分匹配评估学生在同伴辅助学习计划中的成功
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Corey Shanbrom;M. Norris;Caitlin Esgana;Matthew Krauel;Vincent Pigno;Jennifer Lundmark - 通讯作者:
Jennifer Lundmark
A Jacobi theta series and its transformation laws
雅可比 theta 级数及其变换定律
- DOI:
10.1142/s1793042114500316 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Matthew Krauel - 通讯作者:
Matthew Krauel
Zhu reduction for Jacobi $n$-point functions and applications
Zhu 约简雅可比 $n$ 点函数和应用
- DOI:
10.1090/tran/8013 - 发表时间:
2017 - 期刊:
- 影响因子:1.3
- 作者:
K. Bringmann;Matthew Krauel;M. Tuite - 通讯作者:
M. Tuite
Matthew Krauel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
- 批准号:
569537-2022 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
- 批准号:
21K03195 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
- 批准号:
20K03505 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetric functions and vertex operator algebras
对称函数和顶点算子代数
- 批准号:
2279467 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Studentship
Research on uniqueness of holomorphic vertex operator algebras of central charge 24 by using reverse orbifold construction
利用逆轨道折叠结构研究中心电荷24全纯顶点算子代数的唯一性
- 批准号:
17K05154 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and modular differential equations
顶点算子代数和模微分方程
- 批准号:
17K05171 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
- 批准号:
1713945 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Fellowship Award
Research on structural symmetries of vertex operator algebras
顶点算子代数的结构对称性研究
- 批准号:
16K05073 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




