Collaborative Research: Learning and Optimizing Power Systems: A Geometric Approach

协作研究:学习和优化电力系统:几何方法

基本信息

  • 批准号:
    1807142
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The transformations of the electrical grid present a plethora of challenges to system operators and utilities. They must adapt to manage a set of highly uncertain and distributed resources such as electric vehicles and solar PVs, while at the same time operating a grid infrastructure that was designed decades ago. These challenges are particularly acute in the distribution system, where the networks are traditionally not monitored closely, and operators lack the essential information to obtain an accurate real-time operational state of the system. At the same time, the number of outages in distribution systems has started to increase as the system ages, and the loads become more dynamic. The goal of this proposal is to overcome these challenges by developing novel algorithms and new insights that increase the efficiency and resilience of the distribution systems. Educational activities would be developed around these research thrusts to ensure diverse student participation and outreach to the broader community. The project focuses on three thrusts: i) system topology estimation using the wealth of data made available by smart meters and other sensors, where the network may contain loops and the data may be highly heterogeneous; ii) characterization of the feasibility of operating points using a new geometric understanding of power flow that leads to provably efficient and optimal algorithms; and iii) restoration of service right after outages through line switching by using the results from the first two thrusts. These investigations bring in tools from power system analysis, optimization, and statistical learning to enable fundamental advances in the distribution system operations. In particular, these thrusts allow us to leverage recent advances in both technology and theory to develop timely and rigorous algorithms that solve some pressing engineering problems for the power grids. Successful application of our proposed project will allow distribution system operators to answer various "what now" and "what if" questions deriving from those highly volatile grids with large amounts of distributed resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电网的转型给系统运营商和公用事业带来了大量挑战。他们必须适应管理一系列高度不确定和分布式的资源,如电动汽车和太阳能光伏,同时运营几十年前设计的电网基础设施。这些挑战在配电系统中尤其严重,在配电系统中,网络传统上不被密切监控,并且运营商缺乏必要的信息来获得系统的准确实时操作状态。与此同时,随着系统老化,配电系统中的停电次数开始增加,并且负荷变得更加动态。该提案的目标是通过开发新的算法和新的见解来克服这些挑战,以提高配电系统的效率和弹性。将围绕这些研究重点开展教育活动,以确保不同的学生参与和扩大到更广泛的社区。该项目侧重于三个方面:i)利用智能电表和其他传感器提供的大量数据进行系统拓扑估计,其中网络可能包含环路,数据可能高度异构; ii)利用对潮流的新几何理解表征操作点的可行性,从而产生可证明有效和最佳的算法;以及iii)通过使用来自前两个推力的结果,通过线路切换在停电之后立即恢复服务。这些调查带来了来自电力系统分析,优化和统计学习的工具,以实现配电系统运营的根本进步。特别是,这些推力使我们能够利用技术和理论的最新进展,开发及时和严格的算法,解决电网的一些紧迫的工程问题。我们建议的项目的成功应用将使配电系统运营商能够回答各种“现在怎么办”和“如果怎么办”的问题,这些问题来自于那些具有大量分布式资源的高度不稳定的电网。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An iterative approach to improving solution quality for AC optimal power flow problems
提高交流最优潮流问题解决方案质量的迭代方法
Learning to solve DCOPF: A duality approach
学习解决 DCOPF:二元性方法
  • DOI:
    10.1016/j.epsr.2022.108595
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chen, Yize;Zhang, Ling;Zhang, Baosen
  • 通讯作者:
    Zhang, Baosen
A Matrix-Inversion-Free Fixed-Point Method for Distributed Power Flow Analysis
分布式潮流分析的矩阵免逆定点法
  • DOI:
    10.1109/tpwrs.2021.3098479
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Guddanti, Kishan Prudhvi;Weng, Yang;Zhang, Baosen
  • 通讯作者:
    Zhang, Baosen
Safe and Efficient Model Predictive Control Using Neural Networks: An Interior Point Approach
Multi-Agent Reinforcement Learning in Cournot Games
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baosen Zhang其他文献

Solving Differential-Algebraic Equations in Power Systems Dynamics with Neural Networks and Spatial Decomposition
用神经网络和空间分解求解电力系统动力学中的微分代数方程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jochen Stiasny;Spyros Chatzivasileiadis;Baosen Zhang
  • 通讯作者:
    Baosen Zhang
Controlling Grid-Connected Inverters under Time-Varying Voltage Constraints
时变电压约束下控制并网逆变器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixiao Ma;Baosen Zhang
  • 通讯作者:
    Baosen Zhang
Control and Optimization of Power Systems with Renewables: Voltage Regulation and Generator Dispatch
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baosen Zhang
  • 通讯作者:
    Baosen Zhang
Non-Wire Alternatives to Capacity Expansion
容量扩展的无线替代方案
Microstructure, wear properties and corrosion resistance of thermal sprayed FeCoCrNiBSi high-entropy amorphous coatings
热喷涂FeCoCrNiBSi高熵非晶涂层的微观结构、磨损性能及耐腐蚀性
  • DOI:
    10.1016/j.surfcoat.2025.132341
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Liwei Hua;Jiangbo Cheng;Lin Xue;Peisong Song;Baosen Zhang
  • 通讯作者:
    Baosen Zhang

Baosen Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baosen Zhang', 18)}}的其他基金

Collaborative Research: Data-driven Power Systems Control with Stability Guarantees
合作研究:数据驱动的电力系统控制与稳定性保证
  • 批准号:
    2153937
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Optimal Control of Energy Systems via Structured Neural Networks: A Convex Approach
职业:通过结构化神经网络优化能源系统控制:凸方法
  • 批准号:
    1942326
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Learning for Faster Computations to Enhance Efficiency and Security of Power System Operations
协作研究:学习更快的计算以提高电力系统运行的效率和安全性
  • 批准号:
    2023531
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Enhanced Power System Stability using Fast, Distributed Power Electronics Control
使用快速分布式电力电子控制增强电力系统稳定性
  • 批准号:
    1930605
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
US Ignite: Collaborative Research: Focus Area 1: Social Computing Platform for Multi-Modal Transit
US Ignite:合作研究:重点领域 1:多式联运社交计算平台
  • 批准号:
    1646912
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
EAGER: Congestion Mitigation via Better Parking: New Fundamental Models and A Living Lab
EAGER:通过更好的停车缓解拥堵:新的基本模型和生活实验室
  • 批准号:
    1634136
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CPS: Breakthrough: Collaborative Research: The Interweaving of Humans and Physical Systems: A Perspective from Power Systems
CPS:突破:协作研究:人类与物理系统的交织:电力系统的视角
  • 批准号:
    1544160
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330154
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了