CAREER: Optimal Control of Energy Systems via Structured Neural Networks: A Convex Approach

职业:通过结构化神经网络优化能源系统控制:凸方法

基本信息

  • 批准号:
    1942326
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The electric energy system is currently undergoing a period of unprecedented transformations. On the one hand, large-scale deployment of technologies such as rooftop solar and smart building management systems have the potential to make the power system more efficient, sustainable and reliable. On the other hand, achieving this promise has proven to be far from trivial, as many capabilities remain unused. Two primary systems of interest are the heating, ventilation, and air conditioning (HVAC) systems of commercial and industrial buildings, and distributed energy resources in the power distribution system. A fundamental challenge in controlling these systems is that their behaviors are often governed by complex dynamics with unknown parameters. For instance, the relationship between temperature setpoints in different zones and the HVAC power consumption is governed by a set of nonlinear high dimensional partial differential equations, whose parameters depend on detailed building characteristics that are difficult to measure in practice. Similarly, the distribution system is governed by nonlinear AC power flow equations, but since they are typically not monitored, their topology and line parameters are either not known or severely outdated.This CAREER proposal addresses this challenge by leveraging the significant amounts of measurement data that are now becoming available. Fundamentally different from many existing AI applications, the physical laws governing the behaviors of these systems---laws of thermodynamics for heat transfers in buildings and power flow equations---are well studied, but the system parameters are not known and cannot be easily measured. The goal of this project is to provide algorithms with provable guarantees that combine physical laws with data to safely and efficiently operate these energy systems. Specifically, we present a model-based framework that uses structured neural networks to achieve both model tractability and representability, by designing them to be convex from input to output. This project will tightly integrate research and education by working with the campus sustainability office and the local utility, thus training a generation of professionals qualified both in power systems and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前,电力系统正经历着前所未有的变革时期。一方面,屋顶太阳能和智能建筑管理系统等技术的大规模部署有可能使电力系统更加高效、可持续和可靠。另一方面,事实证明,实现这一承诺绝非易事,因为许多功能仍未使用。感兴趣的两个主要系统是商业和工业建筑的供暖、通风和空调(HVAC)系统,以及配电系统中的分布式能源。控制这些系统的一个根本挑战是,它们的行为往往由具有未知参数的复杂动力学所支配。例如,不同区域的温度设定值与暖通空调能耗之间的关系由一组非线性高维偏微分方程组决定,这些偏微分方程组的参数取决于实际中难以测量的详细建筑特性。同样,配电系统由非线性交流潮流方程控制,但由于它们通常不受监控,它们的拓扑和线路参数要么未知,要么严重过时。这份职业建议通过利用现在可用的大量测量数据来解决这一挑战。与许多现有的人工智能应用程序根本不同,控制这些系统行为的物理定律-建筑物内热传递的热力学定律和功率流方程-得到了很好的研究,但系统参数是未知的,也不容易测量。该项目的目标是为算法提供可证明的保证,将物理定律与数据相结合,以安全有效地运行这些能源系统。具体地说,我们提出了一个基于模型的框架,它使用结构化神经网络来实现模型的可处理性和代表性,通过将它们设计为从输入到输出的凸性。该项目将通过与校园可持续发展办公室和当地公用事业机构合作,将研究和教育紧密结合起来,从而培养一代在电力系统和机器学习方面都合格的专业人员。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An iterative approach to improving solution quality for AC optimal power flow problems
提高交流最优潮流问题解决方案质量的迭代方法
Decentralized safe reinforcement learning for inverter-based voltage control
  • DOI:
    10.1016/j.epsr.2022.108609
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wenqi Cui;Jiayi Li;Baosen Zhang
  • 通讯作者:
    Wenqi Cui;Jiayi Li;Baosen Zhang
Stable Reinforcement Learning for Optimal Frequency Control: A Distributed Averaging-Based Integral Approach
  • DOI:
    10.1109/ojcsys.2022.3202202
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Jiang;Wenqi Cui;Baosen Zhang;Jorge Cort'es
  • 通讯作者:
    Yan Jiang;Wenqi Cui;Baosen Zhang;Jorge Cort'es
Data-Driven Optimal Voltage Regulation Using Input Convex Neural Networks
  • DOI:
    10.1016/j.epsr.2020.106741
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chen, Yize;Shi, Yuanyuan;Zhang, Baosen
  • 通讯作者:
    Zhang, Baosen
A Frequency Domain Approach to Predict Power System Transients
  • DOI:
    10.1109/tpwrs.2023.3259960
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Wenqi Cui;Weiwei Yang;Baosen Zhang
  • 通讯作者:
    Wenqi Cui;Weiwei Yang;Baosen Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baosen Zhang其他文献

Control and Optimization of Power Systems with Renewables: Voltage Regulation and Generator Dispatch
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baosen Zhang
  • 通讯作者:
    Baosen Zhang
Solving Differential-Algebraic Equations in Power Systems Dynamics with Neural Networks and Spatial Decomposition
用神经网络和空间分解求解电力系统动力学中的微分代数方程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jochen Stiasny;Spyros Chatzivasileiadis;Baosen Zhang
  • 通讯作者:
    Baosen Zhang
Controlling Grid-Connected Inverters under Time-Varying Voltage Constraints
时变电压约束下控制并网逆变器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixiao Ma;Baosen Zhang
  • 通讯作者:
    Baosen Zhang
Non-Wire Alternatives to Capacity Expansion
容量扩展的无线替代方案
Microstructure, wear properties and corrosion resistance of thermal sprayed FeCoCrNiBSi high-entropy amorphous coatings
热喷涂FeCoCrNiBSi高熵非晶涂层的微观结构、磨损性能及耐腐蚀性
  • DOI:
    10.1016/j.surfcoat.2025.132341
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Liwei Hua;Jiangbo Cheng;Lin Xue;Peisong Song;Baosen Zhang
  • 通讯作者:
    Baosen Zhang

Baosen Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baosen Zhang', 18)}}的其他基金

Collaborative Research: Data-driven Power Systems Control with Stability Guarantees
合作研究:数据驱动的电力系统控制与稳定性保证
  • 批准号:
    2153937
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning for Faster Computations to Enhance Efficiency and Security of Power System Operations
协作研究:学习更快的计算以提高电力系统运行的效率和安全性
  • 批准号:
    2023531
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Enhanced Power System Stability using Fast, Distributed Power Electronics Control
使用快速分布式电力电子控制增强电力系统稳定性
  • 批准号:
    1930605
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning and Optimizing Power Systems: A Geometric Approach
协作研究:学习和优化电力系统:几何方法
  • 批准号:
    1807142
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
US Ignite: Collaborative Research: Focus Area 1: Social Computing Platform for Multi-Modal Transit
US Ignite:合作研究:重点领域 1:多式联运社交计算平台
  • 批准号:
    1646912
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Congestion Mitigation via Better Parking: New Fundamental Models and A Living Lab
EAGER:通过更好的停车缓解拥堵:新的基本模型和生活实验室
  • 批准号:
    1634136
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Breakthrough: Collaborative Research: The Interweaving of Humans and Physical Systems: A Perspective from Power Systems
CPS:突破:协作研究:人类与物理系统的交织:电力系统的视角
  • 批准号:
    1544160
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Constrained Optimal Control of Partial Differential Equations for Improving Energy Utilization in Transportation and in the Built Environment
职业:偏微分方程的约束最优控制,以提高交通和建筑环境中的能源利用率
  • 批准号:
    2042354
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: A Flexible Optimal Control Framework for Efficient Training of Deep Neural Networks
职业生涯:用于高效训练深度神经网络的灵活最优控制框架
  • 批准号:
    1751636
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Control of Encapsulated Ultrasound Microbubbles for Biomedicine
职业:生物医学封装超声微泡的最佳控制
  • 批准号:
    1653992
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: A "first-principles" approach to the smart electric grid: fundamental limits and optimal control algorithms
职业:智能电网的“第一原理”方法:基本限制和最优控制算法
  • 批准号:
    1150801
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Interactive Physically Based Animation and Optimal Control Using Model Reduction
职业:基于物理的交互式动画和使用模型缩减的最优控制
  • 批准号:
    1055035
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
  • 批准号:
    0955463
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Optimal Co-Design of Control and Communication Protocols in Cyber-physical Systems
职业:网络物理系统中控制和通信协议的可扩展和优化协同设计
  • 批准号:
    0846631
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Unified Optimal Control and Estimation of Nonlinear Dynamic Systems with Closed-Form Solutions
职业:具有闭式解的非线性动态系统的统一最优控制和估计
  • 批准号:
    0846877
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Light-weight Near-optimal Stochastic Control Policies for Information Acquisition and Exploitation
职业:用于信息获取和利用的轻量级近最优随机控制策略
  • 批准号:
    0745761
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Managing Complexity: Fidelity Control for Optimal Usability in 3D Graphics Systems
职业:管理复杂性:保真度控制以实现 3D 图形系统的最佳可用性
  • 批准号:
    0639426
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了