SemiSynBio: Redox-enabled Bio-Electronics for Molecular Communication and Memory (RE-BIONICS)

SemiSynBio:用于分子通信和记忆的氧化还原生物电子学(RE-BIONICS)

基本信息

  • 批准号:
    1807604
  • 负责人:
  • 金额:
    $ 112.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The goal of the RE-BIONICS project (Redox-enabled Bio-Electronics based on Molecular Communication) is to create first-of-kind bioelectronics devices that will mediate the rapid and facile information exchange between biology and electronics. These devices will have the potential to transform healthcare, enabling tele-monitoring and remote/autonomous drug delivery and facilitating environmental monitoring in agriculture and cyber-defense where connecting biological phenomena with electronics are important. The technical underpinnings of this work recognize that microelectronic devices depend on electrons for information processing while biology depends on molecules (e.g., insulin, antibodies). These systems are not intrinsically compatible as there are no free electrons in biology that could be transmitted to biological wires and control cell-based electronic circuits. Instead, biohybrid devices are envisioned that transmit information across this electron-molecule divide. New interfaces are needed that accept molecules from biology and create electrons for devices and the reverse. Such integrated systems designed and constructed within RE-BIONICS will be capable of this bidirectional communication for memory and computation. The project will build the components and information theory needed to construct biohybrid devices that could eventually be embedded within a biological system and provide electronic control. In addition to building capabilities for designing and constructing completely new biodevices, a most important aspect of this work is that it will bring together researchers and stakeholders from many disciplines, including biology, chemistry, materials science, and computer, electrical, chemical, and bioengineering. The project builds on the interdisciplinary nature of the project with Research Team from computer science, electrical engineering and bioengineering. The research thrusts span computer science and information theory, microelectromechanical systems, biofabrication and redox biology, and synthetic biology. Also, two interdisciplinary teams of undergraduate students from UMD and UNL will participate in the international Genetically Engineered Machine (iGEM) program and competition, and participate in specific outreach activities targeting Middle and High school students within the Future Problem Solving Program (FPSPI) at UNL. Further, this project will promote the participation of women, historically underrepresented in electrical engineering, representing more than majors in biology and bioengineering. RE-BIONICS researchers will also interact with federal agencies including NIST, FDA, and the Army Research Laboratory, gaining exposure to manufacturing and regulatory issues, as well as direct application areas such as national security. This project exploits reduction-oxidation (redox) mediators that are the biological equivalents of free electrons in electronics. The reactions represent packets of information transferred within biology. The project is organized into three specific aims. In Aim 1, the team will design, build and test device elements that facilitate information transfer from molecules of biological systems to electrons of microelectronic systems and the reverse. Using the principles of synthetic biology, bacterial cells will be engineered to recognize small signaling molecules, an example being pyocyanin that is secreted by opportunistic pathogen, Pseudomonas aeruginosa. Based on this recognition, these and other engineered sensing cells will produce -galactosidase, an enzyme that can be electrochemically quantified. In addition, cells will be engineered to accept electrons from devices and in a programmed manner, "turn on" gene expression that can modulate cell behavior. In Aim 2, the team will design and construct a biological read/write memory device, based on the biopolymer melanin, that can be accessed both biologically and electronically. In Aim 3, the team will integrate these elements creating biohybrid circuits, such as bioelectric logic gates, and biologic to electronic to biologic signaling systems, culminating in an electronically-controlled device that interprets molecular information, computes desired outcomes and electronically actuates cells to signal and control biological populations. There are three fundamentally novel aspects to this work. First, it will demonstrate the potential to transfer information from biological systems to microelectronic systems and the reverse, forming the basis for bioelectronic integrated computing systems. Second, it will demonstrate electronically-controlled synthesis of a novel, reliable and stable biological memory device. Third, it will develop a technological framework for the development of bio-hybrid computing devices that efficiently sense and process chemical information as well as operate within and control complex biological systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
RE-BIONICS项目(基于分子通信的氧化还原生物电子学)的目标是创建第一种生物电子设备,以介导生物学和电子学之间快速简便的信息交换。这些设备将有可能改变医疗保健,实现远程监测和远程/自主药物输送,并促进农业和网络防御中的环境监测,其中将生物现象与电子设备连接起来非常重要。这项工作的技术基础认识到,微电子设备依赖于电子进行信息处理,而生物学依赖于分子(例如,胰岛素、抗体)。这些系统本质上并不兼容,因为生物学中没有自由电子可以传输到生物导线并控制基于细胞的电子电路。相反,设想生物混合装置可以跨越电子-分子鸿沟传输信息。我们需要新的界面,从生物学中接受分子,为设备创造电子,反之亦然。在RE-BIONICS中设计和构建的这种集成系统将能够进行这种存储和计算的双向通信。该项目将建立构建生物混合设备所需的组件和信息理论,这些设备最终可以嵌入生物系统并提供电子控制。除了建立设计和构建全新生物设备的能力外,这项工作最重要的方面是它将汇集来自许多学科的研究人员和利益相关者,包括生物学,化学,材料科学,计算机,电气,化学和生物工程。 该项目建立在项目的跨学科性质上,研究团队来自计算机科学,电气工程和生物工程。研究方向涵盖计算机科学和信息理论、微机电系统、生物制造和氧化还原生物学以及合成生物学。 此外,来自UMD和UNL的两个跨学科本科生团队将参加国际遗传工程机器(iGEM)计划和竞赛,并参加针对UNL未来问题解决计划(FPSPI)中的中学生的具体推广活动。 此外,该项目还将促进历来在电气工程专业任职人数不足的妇女的参与,她们在生物学和生物工程专业的任职人数超过了专业人数。 RE-BIONICS研究人员还将与包括NIST、FDA和陆军研究实验室在内的联邦机构进行互动,了解制造和监管问题,以及国家安全等直接应用领域。该项目利用还原-氧化(氧化还原)介质,这些介质是电子学中自由电子的生物等效物。这些反应代表了生物体内传递的信息包。 该项目分为三个具体目标。在目标1中,该团队将设计,建造和测试设备元件,以促进从生物系统的分子到微电子系统的电子的信息传递。利用合成生物学的原理,细菌细胞将被改造为识别小信号分子,一个例子是绿脓杆菌,由机会致病菌,铜绿假单胞菌分泌。基于这种认识,这些和其他工程传感细胞将产生β-半乳糖苷酶,一种可以电化学定量的酶。此外,细胞将被改造为接受来自设备的电子,并以编程的方式“打开”可以调节细胞行为的基因表达。在目标2中,该团队将设计和构建一种基于生物聚合物黑色素的生物读/写存储设备,该设备可以通过生物学和电子学方式访问。在目标3中,该团队将整合这些元素,创建生物混合电路,如生物电逻辑门,生物到电子到生物信号系统,最终形成一种电子控制的设备,可以解释分子信息,计算所需的结果,并以电子方式驱动细胞以发出信号并控制生物种群。 这项工作有三个基本的新颖之处。首先,它将展示将信息从生物系统转移到微电子系统的潜力,并形成生物电子集成计算系统的基础。其次,它将展示一种新型、可靠和稳定的生物记忆器件的电子控制合成。第三,它将为开发生物混合计算设备开发一个技术框架,这些设备可以有效地感知和处理化学信息,并在复杂的生物系统中运行和控制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homologous Quorum Sensing Regulatory Circuit: A Dual-Input Genetic Controller for Modulating Quorum Sensing-Mediated Protein Expression in E. coli.
  • DOI:
    10.1021/acssynbio.0c00179
  • 发表时间:
    2020-10-16
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Hauk P;Stephens K;Virgile C;VanArsdale E;Pottash AE;Schardt JS;Jay SM;Sintim HO;Bentley WE
  • 通讯作者:
    Bentley WE
Catechol Patterned Film Enables the Enzymatic Detection of Glucose with Cell Phone Imaging
  • DOI:
    10.1021/acssuschemeng.1c04896
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Si Wu;J. Rzasa;Eunkyoung Kim;Zhiling Zhao;Jinyang Li;W. Bentley;N. N. Payne-N.;Xiaowen Shi;G. Payne
  • 通讯作者:
    Si Wu;J. Rzasa;Eunkyoung Kim;Zhiling Zhao;Jinyang Li;W. Bentley;N. N. Payne-N.;Xiaowen Shi;G. Payne
Hydrogel Patterning with Catechol Enables Networked Electron Flow
  • DOI:
    10.1002/adfm.202007709
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Si Wu;Zhiling Zhao;J. Rzasa;Eunkyoung Kim;Jinyang Li;Eric VanArsdale;W. Bentley;Xiaowen Shi;G. Payne
  • 通讯作者:
    Si Wu;Zhiling Zhao;J. Rzasa;Eunkyoung Kim;Jinyang Li;Eric VanArsdale;W. Bentley;Xiaowen Shi;G. Payne
A redox-based electrogenetic CRISPR system to connect with and control biological information networks
  • DOI:
    10.1038/s41467-020-16249-x
  • 发表时间:
    2020-05-15
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Bhokisham, Narendranath;VanArsdale, Eric;Bentley, William E.
  • 通讯作者:
    Bentley, William E.
Mediated Electrochemistry to Mimic Biology's Oxidative Assembly of Functional Matrices
  • DOI:
    10.1002/adfm.202001776
  • 发表时间:
    2020-06-02
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Li, Jinyang;Kim, Eunkyoung;Payne, Gregory F.
  • 通讯作者:
    Payne, Gregory F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Bentley其他文献

What Is Lean Six Sigma
什么是精益六西格码
  • DOI:
    10.1201/9781439803820.ch4
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Bentley;Peter Davis
  • 通讯作者:
    Peter Davis
Electrochemical classification and quantification of biologics using cyclic voltammetry and machine learning
  • DOI:
    10.1016/j.bpj.2022.11.1644
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Kayla Chun;William Bentley
  • 通讯作者:
    William Bentley

William Bentley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Bentley', 18)}}的其他基金

SemiSynBio-III: Towards Understanding and Controlling Redox for Microbial Memory and INteractions - TURIN
SemiSynBio-III:了解和控制微生物记忆和相互作用的氧化还原 - TURIN
  • 批准号:
    2227598
  • 财政年份:
    2022
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
IUCRC Phase II+ University of Maryland: Center for Advanced Mammalian Biomanufacturing Innovation (AMBIC)
IUCRC 第二阶段 马里兰大学:先进哺乳动物生物制造创新中心 (AMBIC)
  • 批准号:
    2100632
  • 财政年份:
    2021
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Continuing Grant
Designing Materials to Revolutionize and Engineer our Future (DMREF)
设计材料以彻底改变和设计我们的未来 (DMREF)
  • 批准号:
    2007952
  • 财政年份:
    2020
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Phase I IUCRC at Maryland: Advanced Mammalian Biomanufacturing Innovation Center (AMBIC)
马里兰州 IUCCRC 第一阶段:先进哺乳动物生物制造创新中心 (AMBIC)
  • 批准号:
    1841506
  • 财政年份:
    2018
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Continuing Grant
Bio-Based "Molectronic" Devices for Bidirectional Molecular-to-Electronic Signal Transduction
用于双向分子到电子信号转导的生物基“分子”器件
  • 批准号:
    1805274
  • 财政年份:
    2018
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Designing Materials to Revolutionize and Engineer our Future March 26th & 27th 2018 Meeting
设计材料以彻底改变和设计我们的未来 3 月 26 日
  • 批准号:
    1826506
  • 财政年份:
    2018
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Workshop: International collaboration to advance biomanufacturing; September 7-8, 2017; Brussels, Belgium
研讨会:国际合作推进生物制造;
  • 批准号:
    1749786
  • 财政年份:
    2017
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
An integrated approach, using biofabrication and chemical synthesis, to study cell signaling
使用生物制造和化学合成研究细胞信号传导的综合方法
  • 批准号:
    1264509
  • 财政年份:
    2013
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
A Switch for Synthetic Biology Based on Feature Density
基于特征密度的合成生物学开关
  • 批准号:
    1160005
  • 财政年份:
    2012
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
EFRI-CBE Topic B: Biofunctionalized Devices - On Chip Signaling and "Rewiring" Bacterial Cell-Cell Communication
EFRI-CBE 主题 B:生物功能化器件 - 片上信号传导和“重新布线”细菌细胞间通信
  • 批准号:
    1042881
  • 财政年份:
    2010
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant

相似国自然基金

马尾松体胚发生中GSH介导的Redox系统双效性及其作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
Redox变化条件下溶解性硅对地下水砷物种迁移转化的影响研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动态redox条件下生物铁矿物对地下水低渗透区三氯乙烯迁移转化影响机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酮体β-羟丁酸调控Redox稳态及线粒体反向电子传递减轻心肺复苏脑损伤的机制研究
  • 批准号:
    82072132
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
适度补硒对酒精性肝损伤的拮抗作用及机制研究:Insulin信号调控的Redox稳态和ADH1-ALDH2平衡
  • 批准号:
    31900892
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Redox动态变化下潜流带中氯乙酰胺类除草剂转化过程的碳氯同位素解析
  • 批准号:
    41772263
  • 批准年份:
    2017
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
镉致Redox平衡失调氧化损伤的时效、量效与干预机制的研究
  • 批准号:
    81473010
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
汉江平原潜流带Redox变化特征及有机磷农药迁移转化机理
  • 批准号:
    41372255
  • 批准年份:
    2013
  • 资助金额:
    93.0 万元
  • 项目类别:
    面上项目
谷胱甘肽及其介导的redox信号调控番茄体内百菌清降解代谢的机理研究
  • 批准号:
    31301769
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
redox信号介导的6-BA调控黄瓜弱光适应性的生理与分子机制
  • 批准号:
    31301818
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Textile waste as carbon source for redox flow battery electrodes
纺织废料作为氧化还原液流电池电极的碳源
  • 批准号:
    2901277
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Studentship
Conference: 2024 Thiol-Based Redox Regulation and Signaling GRC and GRS: Mechanisms and Consequences of Redox Signaling
会议:2024年基于硫醇的氧化还原调节和信号传导GRC和GRS:氧化还原信号传导的机制和后果
  • 批准号:
    2418618
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
  • 批准号:
    2411998
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Continuing Grant
Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
  • 批准号:
    FT230100526
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    ARC Future Fellowships
Redox and Excited State Properties of Oligothiophene-Bearing Ru(II) Photodrugs
含低聚噻吩 Ru(II) 光药物的氧化还原和激发态性质
  • 批准号:
    2400127
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329651
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Solid Boosters and Electrolytes for Redox-Targeting Flow Batteries
合作研究:为氧化还原目标液流电池设计固体助推器和电解质
  • 批准号:
    2329652
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2419938
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2427263
  • 财政年份:
    2024
  • 资助金额:
    $ 112.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了