Epitaxy and Characterization of h-BN/AlGaN Nanowire Heterostructures: Towards High Efficiency Light Emitters in the Ultraviolet-C Band

h-BN/AlGaN 纳米线异质结构的外延和表征:迈向紫外 C 波段的高效发光体

基本信息

项目摘要

Nontechnical description: This project is related to the development of a new generation of nanostructured wide bandgap semiconductor materials, which have the potential to enable efficient light emission in deep ultraviolet spectrum. If successfully developed, such materials promise new semiconductor light sources that can potentially replace conventional mercury lamps and excimer lasers for a broad range of applications, including water purification, sensing, and sterilization. For example, the replacement of mercury lamps by high efficiency solid-state ultraviolet lamps will eliminate mercury emissions to air, soil, and water and also significantly reduce electricity consumption for water processing and treatment. The broader impacts also include the highly interdisciplinary nature of the proposed research and the outreach to undergraduate, underrepresented minorities, and K-12. Students will be trained in a highly collaborative and interdisciplinary environment that includes materials design and theory (physics and materials science), nanomaterials growth/synthesis (materials science and electrical engineering), and characterization (materials science and engineering). Enhanced student training and teaching will also be achieved through characterization workshops and by developing and distributing state-of-the-art, open source software tool for offline processing electron microscopy data. Technical description: The overarching goal of this project is to investigate hexagonal boron nitride (h-BN) and aluminum gallium nitride (AlGaN) nanowire heterojunctions to enable efficient current injection and light emission in the deep ultraviolet wavelength range that was difficult to achieve in conventional wide bandgap materials. In this project, h-BN/AlGaN nanowire heterostuctures are grown by plasma-assisted molecular beam epitaxy and are characterized using a broad range of techniques, including transmission electron microscopy, scanning transmission electron microscopy, photoluminescence spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Due to the efficient surface strain relaxation, the use of nanowires can significantly reduce the formation of dislocations related to the lattice mismatch between h-BN and AlGaN and with the underlying substrate. More specifically, the research aims to demonstrate strong p-type conductivity of h-BN by exploiting the shallow acceptor-like boron vacancy formation, and realize h-BN/AlGaN heterojunctions wherein the p-type h-BN can function as deep ultraviolet transparent, conductive electrode. This could enable the replacement of conventional resistive and highly absorptive Ga(Al)N contact layers in current ultraviolet light emitters, and therefore promises ultraviolet light emitters with significantly enhanced efficiency. The effort is based on close interaction between two research groups with complementary expertise ensuring a closed loop between materials design and modeling, epitaxy, materials characterization, fabrication, and testing. Such an interdisciplinary, highly collaborative approach also provides a comprehensive training environment for both graduate and undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:该项目涉及新一代纳米结构宽带隙半导体材料的开发,该材料具有在深紫外光谱中实现高效发光的潜力。如果成功开发,这种材料有望成为新的半导体光源,有可能取代传统的汞灯和准分子激光器,用于广泛的应用,包括水净化,传感和消毒。例如,用高效固态紫外线灯取代汞灯,将消除汞向空气、土壤和水中的排放,并大大减少水处理和处理的电力消耗。更广泛的影响还包括拟议研究的高度跨学科性质,以及对本科生,代表性不足的少数民族和K-12的推广。学生将在高度协作和跨学科的环境中接受培训,包括材料设计和理论(物理学和材料科学),纳米材料生长/合成(材料科学和电气工程)和表征(材料科学和工程)。还将通过表征研讨会以及开发和分发用于离线处理电子显微镜数据的最先进的开源软件工具来加强学生培训和教学。技术说明:该项目的首要目标是研究六方氮化硼(h-BN)和氮化铝镓(AlGaN)纳米线异质结,以实现在传统宽带隙材料难以实现的深紫外波长范围内的有效电流注入和发光。在这个项目中,h-BN/AlGaN纳米线异质结生长的等离子体辅助分子束外延,并使用广泛的技术,包括透射电子显微镜,扫描透射电子显微镜,光致发光光谱,显微拉曼光谱和X射线衍射的特点。由于有效的表面应变弛豫,纳米线的使用可以显著减少与h-BN和AlGaN之间以及与下面的衬底之间的晶格失配相关的位错的形成。更具体地说,该研究旨在通过利用浅受体样硼空位形成来证明h-BN的强p型导电性,并实现h-BN/AlGaN异质结,其中p型h-BN可以用作深紫外透明的导电电极。这可以使得能够替换当前紫外光发射器中的常规电阻性和高吸收性Ga(Al)N接触层,并且因此承诺具有显著增强的效率的紫外光发射器。这项工作是基于两个研究小组之间的密切互动,互补的专业知识,确保材料设计和建模,外延,材料表征,制造和测试之间的闭环。这种跨学科、高度协作的方法也为研究生和本科生提供了一个全面的培训环境。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AlGaN nanocrystals: building blocks for efficient ultraviolet optoelectronics
  • DOI:
    10.1364/prj.7.000b12
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Xianhe Liu;Kishwar Mashooq;D. Laleyan;E. Reid;Z. Mi
  • 通讯作者:
    Xianhe Liu;Kishwar Mashooq;D. Laleyan;E. Reid;Z. Mi
Removing Stripes, Scratches, and Curtaining with Nonrecoverable Compressed Sensing
  • DOI:
    10.1017/s1431927619000254
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Schwartz, Jonathan;Jiang, Yi;Hovden, Robert
  • 通讯作者:
    Hovden, Robert
Electron overflow of AlGaN deep ultraviolet light emitting diodes
AlGaN深紫外发光二极管的电子溢出
  • DOI:
    10.1063/5.0055326
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Pandey, A.;Gim, J.;Hovden, R.;Mi, Z.
  • 通讯作者:
    Mi, Z.
Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy
  • DOI:
    10.1103/physrevmaterials.3.053401
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Pandey;Xianhe Liu;Z. Deng;W. Shin;D. Laleyan;Kishwar Mashooq;E. Reid;E. Kioupakis;P. Bhattacharya;Z. Mi
  • 通讯作者:
    A. Pandey;Xianhe Liu;Z. Deng;W. Shin;D. Laleyan;Kishwar Mashooq;E. Reid;E. Kioupakis;P. Bhattacharya;Z. Mi
Quaternary alloy ScAlGaN: A promising strategy to improve the quality of ScAlN
  • DOI:
    10.1063/5.0060608
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Ping Wang;Ding Wang;Yutong Bi;Boyu Wang;Jonathan Schwartz;R. Hovden;Z. Mi
  • 通讯作者:
    Ping Wang;Ding Wang;Yutong Bi;Boyu Wang;Jonathan Schwartz;R. Hovden;Z. Mi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zetian Mi其他文献

Multi-Purpose Oriented Real-World Underwater Image Enhancement
面向多用途的现实世界水下图像增强
  • DOI:
    10.1109/access.2020.3002883
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zetian Mi;Yuanyuan Li;Yafei Wang;Xianping Fu
  • 通讯作者:
    Xianping Fu
Impact of Charge Carrier Transfer and Strain Relaxation on Red-Emitting InGaN/GaN Heterostructures
载流子转移和应变弛豫对发红光 InGaN/GaN 异质结构的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Y. Malhotra;Yifan Shen;Yuanpeng Wu;Josey Hanish;Yifu Guo;Yixin Xiao;Kai Sun;Theodore Norris;Zetian Mi
  • 通讯作者:
    Zetian Mi
Influence of laser scanning speed on the microstructure and wear resistance properties of Inconel 718 coating
  • DOI:
    10.1007/s10853-024-10266-7
  • 发表时间:
    2024-09-26
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Fengming Du;Shanshan Liu;Zetian Mi;Guogang Zhang;Yan Shen;Yu Liu
  • 通讯作者:
    Yu Liu
Ferroelectric AlScN as an Extreme Nonlinear Quantum Material beyond LiNbO3
铁电 AlScN 作为超越 LiNbO3 的极端非线性量子材料
Structural and electrical characterization of monolithic core-double shell n-GaN/Al/p-AlGaN nanowire heterostructures grown by molecular beam epitaxy.
通过分子束外延生长的单片核双壳 n-GaN/Al/p-AlGaN 纳米线异质结构的结构和电学表征。
  • DOI:
    10.1039/c9nr00081j
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    S. Sadaf;S. Sadaf;Y. Ra;S. Zhao;T. Szkopek;Zetian Mi;Zetian Mi
  • 通讯作者:
    Zetian Mi

Zetian Mi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zetian Mi', 18)}}的其他基金

FuSe-TG: Materials and Devices Co-Design for Next-Generation Communication Systems
FuSe-TG:下一代通信系统的材料和器件协同设计
  • 批准号:
    2235377
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DMREF: III-nitride Monolayers and Extreme Quantum Dots
DMREF:III族氮化物单层和极端量子点
  • 批准号:
    2118809
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Electrically Injected Ultraviolet AlGaN Photonic Nanocrystal Surface Emitting Lasers
电注入紫外 AlGaN 光子纳米晶体表面发射激光器
  • 批准号:
    2026484
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Bandgap Engineering of Dilute Antimonide III-Nitride Nanostructures for Efficient and Stable Photocatalytic Overall Water Splitting
合作研究:稀锑化物III-氮化物纳米结构的带隙工程,用于高效稳定的光催化整体水分解
  • 批准号:
    1804458
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Electrically Pumped Full-Color and White-Color InGaN/GaN Surface-Emitting Lasers Monolithically Integrated on a Single Chip
单芯片上单片集成的电泵浦全色和白色 InGaN/GaN 表面发射激光器
  • 批准号:
    1709207
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Travel Support for International Symposium on Semiconductor Light Emitting Devices. To be Held in Banff, Canada, October 8-12, 2017
半导体发光器件国际研讨会的旅行支持。
  • 批准号:
    1745742
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Spectroscopic Characterization and Low Temperature Kinetic Study of Hydrogenated Aromatic Radicals
RUI:氢化芳香族自由基的光谱表征和低温动力学研究
  • 批准号:
    2348916
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
  • 批准号:
    2339330
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of dominant negative ACTA2 variants : a zebrafish model for non-syndromic aortic aneurysms
显性失活 ACTA2 变异的表征:非综合征性主动脉瘤的斑马鱼模型
  • 批准号:
    24K18891
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
  • 批准号:
    2334028
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Advancing ceramic processing science through acoustic characterization
职业:通过声学表征推进陶瓷加工科学
  • 批准号:
    2338898
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Thermospheric Estimation and CHaracterization with Nitric Oxide (TECHNO)
使用一氧化氮进行热层估计和表征 (TECHNO)
  • 批准号:
    2343844
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了