Collaborative Research: Bandgap Engineering of Dilute Antimonide III-Nitride Nanostructures for Efficient and Stable Photocatalytic Overall Water Splitting
合作研究:稀锑化物III-氮化物纳米结构的带隙工程,用于高效稳定的光催化整体水分解
基本信息
- 批准号:1804458
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy from the sun offers a sustainable alternative to conventional energy sources such as fossil fuels. This project focuses on using sunlight to split water into hydrogen and oxygen, for direct use of hydrogen as a fuel, or for further chemical reactions to generate a broad range of fuels and chemicals. Specifically, the project will investigate a new class of semiconductor materials that have potential to significantly increase the efficiency of solar-to-fuel energy conversion, thereby achieving more cost-effective catalysts and energy conversion devices. The project will contribute to our Nation's energy security and future energy needs while also building a highly-trained workforce and providing STEM-related outreach to undergraduate students, underrepresented minorities, and K-12 students.The research will explore dilute antimonide nitrides, e.g. InGaSbN nanowires to overcome the limitations of conventional photocatalyst materials for achieving photocatalytic overall water splitting under light illumination up to 700 nm in wavelength, which has remained a grand challenge in renewable energy and in artificial photosynthesis. The research team has recently shown, both theoretically and experimentally, that the energy bandgap (approximately 3.4 eV) of GaN can be substantially reduced to about 2 eV with the incorporation of a small amount of antimony (Sb). Significantly, the reduction of energy bandgap of GaN with Sb incorporation is primarily due to the upward shift of the valence band edge, which is in direct contrast to the downward shift of the conduction band edge by alloying with indium (In). The project will start with first-principles calculations of the energy band structure and electronic, optical and photocatalytic properties of InGaSbN. Experimentally, the predicted nanoscale photocatalyst compositions will be grown on low cost, large area Si substrates, and will be characterized using a broad range of techniques. The bandgap energy and band edge positions of InGaSbN will be tuned by independently varying In and Sb incorporation, and their photocatalytic performance in overall water splitting and half reactions will be thoroughly investigated. In addition, the surfaces of InGaSbN nanowires will be engineered to be nitrogen-rich to protect against photocorrosion and oxidation, with the goal to achieve high efficiency, long-term stable operation. Success of this project will also provide an ideal 1.7 eV top light absorber to pair with a Si bottom light absorber to achieve high efficiency, low cost, and highly stable photoelectrochemical water splitting. The education and outreach program includes 1) encouraging underrepresented minorities and women in careers in science and engineering, 2) involving undergraduate students in research, and 3) communicating the research to the general public. This project will reach out to the broader public, particularly underrepresented groups on the science and technology of nanostructured materials, catalysis, and solar energy devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳能是化石燃料等传统能源的可持续替代品。这个项目的重点是利用阳光将水分解成氢和氧,直接使用氢作为燃料,或者进行进一步的化学反应,以产生广泛的燃料和化学品。具体来说,该项目将研究一种新型半导体材料,这种材料有可能显著提高太阳能到燃料的能量转换效率,从而实现更具成本效益的催化剂和能量转换设备。该项目将有助于我们国家的能源安全和未来的能源需求,同时还将建立一支训练有素的劳动力队伍,并为本科生、代表性不足的少数民族和K-12学生提供stem相关的外展服务。该研究将探索稀锑化氮化物,如InGaSbN纳米线,以克服传统光催化剂材料的局限性,在波长高达700 nm的光照下实现光催化整体水分解,这在可再生能源和人工光合作用中仍然是一个巨大的挑战。该研究小组最近在理论和实验上都表明,加入少量锑(Sb)后,GaN的能带隙(约3.4 eV)可以大幅降低到约2 eV。值得注意的是,掺入Sb后氮化镓能隙的减小主要是由于价带边缘的上移,这与与铟(in)合金化后导带边缘的下移形成了直接对比。该项目将从InGaSbN的能带结构、电子、光学和光催化性质的第一性原理计算开始。实验上,预测的纳米级光催化剂组合物将在低成本、大面积的硅衬底上生长,并将使用广泛的技术进行表征。InGaSbN的带隙能量和带边位置将通过独立改变In和Sb掺入量来调节,并将深入研究其在全水分解和半反应中的光催化性能。此外,InGaSbN纳米线的表面将被设计成富氮的,以防止光腐蚀和氧化,目标是实现高效,长期稳定的运行。该项目的成功也将提供理想的1.7 eV顶光吸收剂与Si底光吸收剂配对,以实现高效,低成本,高稳定的光电化学水分解。教育和推广项目包括:1)鼓励未被充分代表的少数民族和女性从事科学和工程职业;2)让本科生参与研究;3)向公众传播研究成果。这个项目将接触到更广泛的公众,特别是在纳米结构材料、催化和太阳能设备等科学和技术方面代表性不足的群体。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing the large bandgap-bowing and signature of antimony (Sb) in dilute-antimonide III-nitride using micro-Raman scattering
- DOI:10.1063/1.5109735
- 发表时间:2019-08
- 期刊:
- 影响因子:3.2
- 作者:F. Chowdhury;Z. Mi
- 通讯作者:F. Chowdhury;Z. Mi
An In0.42Ga0.58N tunnel junction nanowire photocathode monolithically integrated on a nonplanar Si wafer
- DOI:10.1016/j.nanoen.2018.12.067
- 发表时间:2019-03
- 期刊:
- 影响因子:17.6
- 作者:Yongjie Wang;S. Vanka;J. Gim;Yuanpeng Wu;Ronglei Fan;Yazhou Zhang;Jinwen Shi;M. Shen;R. Hovden;Z. Mi
- 通讯作者:Yongjie Wang;S. Vanka;J. Gim;Yuanpeng Wu;Ronglei Fan;Yazhou Zhang;Jinwen Shi;M. Shen;R. Hovden;Z. Mi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zetian Mi其他文献
Multi-Purpose Oriented Real-World Underwater Image Enhancement
面向多用途的现实世界水下图像增强
- DOI:
10.1109/access.2020.3002883 - 发表时间:
2020-06 - 期刊:
- 影响因子:3.9
- 作者:
Zetian Mi;Yuanyuan Li;Yafei Wang;Xianping Fu - 通讯作者:
Xianping Fu
Impact of Charge Carrier Transfer and Strain Relaxation on Red-Emitting InGaN/GaN Heterostructures
载流子转移和应变弛豫对发红光 InGaN/GaN 异质结构的影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:7
- 作者:
Y. Malhotra;Yifan Shen;Yuanpeng Wu;Josey Hanish;Yifu Guo;Yixin Xiao;Kai Sun;Theodore Norris;Zetian Mi - 通讯作者:
Zetian Mi
Influence of laser scanning speed on the microstructure and wear resistance properties of Inconel 718 coating
- DOI:
10.1007/s10853-024-10266-7 - 发表时间:
2024-09-26 - 期刊:
- 影响因子:3.900
- 作者:
Fengming Du;Shanshan Liu;Zetian Mi;Guogang Zhang;Yan Shen;Yu Liu - 通讯作者:
Yu Liu
Ferroelectric AlScN as an Extreme Nonlinear Quantum Material beyond LiNbO3
铁电 AlScN 作为超越 LiNbO3 的极端非线性量子材料
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiangnan Liu;Pierre;Wade Wu;Qiannan Wen;Stéphane Kéna;Mack Kira;Zetian Mi - 通讯作者:
Zetian Mi
A 19 GHz All-Epitaxial Al₀.₈Sc₀.₂N Cascaded FBAR for RF Filtering Applications
适用于射频滤波应用的 19 GHz 全外延 Al₀.₈Sc₀.₂N 级联 FBAR
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.9
- 作者:
Mingyo Park;Jialin Wang;Ding Wang;Zetian Mi;A. Ansari - 通讯作者:
A. Ansari
Zetian Mi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zetian Mi', 18)}}的其他基金
FuSe-TG: Materials and Devices Co-Design for Next-Generation Communication Systems
FuSe-TG:下一代通信系统的材料和器件协同设计
- 批准号:
2235377 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
DMREF: III-nitride Monolayers and Extreme Quantum Dots
DMREF:III族氮化物单层和极端量子点
- 批准号:
2118809 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Electrically Injected Ultraviolet AlGaN Photonic Nanocrystal Surface Emitting Lasers
电注入紫外 AlGaN 光子纳米晶体表面发射激光器
- 批准号:
2026484 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Epitaxy and Characterization of h-BN/AlGaN Nanowire Heterostructures: Towards High Efficiency Light Emitters in the Ultraviolet-C Band
h-BN/AlGaN 纳米线异质结构的外延和表征:迈向紫外 C 波段的高效发光体
- 批准号:
1807984 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Electrically Pumped Full-Color and White-Color InGaN/GaN Surface-Emitting Lasers Monolithically Integrated on a Single Chip
单芯片上单片集成的电泵浦全色和白色 InGaN/GaN 表面发射激光器
- 批准号:
1709207 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Travel Support for International Symposium on Semiconductor Light Emitting Devices. To be Held in Banff, Canada, October 8-12, 2017
半导体发光器件国际研讨会的旅行支持。
- 批准号:
1745742 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Carrier dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys
合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相
- 批准号:
1809708 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Bandgap Engineering of Dilute Antimonide III-Nitride Nanostructures for Efficient and Stable Photocatalytic Overall Water Splitting
合作研究:稀锑化物III-氮化物纳米结构的带隙工程,用于高效稳定的光催化整体水分解
- 批准号:
1804077 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Carrier Dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys
合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相
- 批准号:
1809120 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EAGER: TDM Solar Cells: Collaborative Research: Exploration of High Open-Circuit Voltage and Stable Wide-Bandgap Cu2BaSnS4 Solar Cells for Monolithic Tandem Cell Applications
EAGER:TDM 太阳能电池:合作研究:用于单片串联电池应用的高开路电压和稳定宽带隙 Cu2BaSnS4 太阳能电池的探索
- 批准号:
1665028 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
EAGER: TDM Solar Cells: Collaborative Research: Exploration of High Open-Circuit Voltage and Stable Wide-Bandgap Cu2BaSnS4 Solar Cells for Monolithic Tandem Cell Applications
EAGER:TDM 太阳能电池:合作研究:用于单片串联电池应用的高开路电压和稳定宽带隙 Cu2BaSnS4 太阳能电池的探索
- 批准号:
1664983 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
- 批准号:
1534303 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
- 批准号:
1534279 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
- 批准号:
1534221 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Studies of the Properties of B-III-N Wide-Bandgap Semiconductor Alloys
合作研究:B-III-N宽带隙半导体合金性能的基础研究
- 批准号:
1410874 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Fundamental Studies of the Properties of B-III-N Wide-Bandgap Semiconductor Alloys
合作研究:B-III-N宽带隙半导体合金性能的基础研究
- 批准号:
1411022 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant