Rational development of next-generation shape memory alloys
下一代形状记忆合金的合理发展
基本信息
- 批准号:1808162
- 负责人:
- 金额:$ 43.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical AbstractShape memory alloys (SMAs) are materials that undergo large shape changes when their temperatures are changed. This unique property makes SMAs ideal for the fabrication of powerful yet lightweight actuators for a variety of applications. While SMAs have already been adopted in a number of commercial technologies - from image stabilizers in smart phones to tools for minimally invasive endovascular surgery - the relatively low operating temperatures of commercially available SMAs (typically between room temperature and 100 degrees C) make them unsuitable for many applications. New alloys are needed that operate at either much higher or much lower temperatures to prevent inadvertent actuation by ambient temperature fluctuations or to allow operation under adverse conditions. In this project, a framework for the rational design of novel SMAs will be developed. The framework will couple high-throughput computational and experimental techniques using a physical model that quantitatively relates material properties to physical parameters. This framework will be used to screen a range of alloys with the goal of identifying new families of SMAs with tailored shape memory properties in terms of operating temperature and functional stability. The computational strategy will start with a rapid screening for alloy endpoints that exhibit relevant characteristics of shape memory alloys. Physical models will then be trained to rapidly interpolate the thermomechanical properties of complex alloy compositions in the region spanning the endpoints. Materials systems of interest identified in the computational phase will then be investigated using state-of-the art experimental techniques. The methodology developed in this project and the ensuing fundamental understanding of the phase transformation responsible for the shape memory effect will provide a pathway to the targeted design of novel SMAs that may be used in a broad range of applications. The methodology is also easily transferred to the design and understanding of other classes of active materials that may be used in sensors or actuators. The computational methods that will be developed in this project fit very well within a graduate curriculum for computational materials science and will be incorporated in a graduate course on computational materials design. This project will also provide the context for a summer internship program for undergraduate students and for high-school students from local public schools that will provide a learning environment for students to experiment with materials, processing, modeling, and data science. Technical AbstractShape memory alloys (SMAs) undergo large recoverable shape changes as a result of thermoelastic martensitic transformations. These alloys have actuation energy densities that are an order of magnitude higher than any other solid-state actuator and are therefore of interest for lightweight and robust actuation systems. Nitinol, the most commonly used SMA, has actuation temperatures slightly above ambient temperature. To fully realize the potential of SMAs, new alloys are needed that can operate at either much higher or lower temperatures. In this project, a framework for the rational design of novel SMAs will be developed. The framework will couple high-throughput computational and experimental techniques using a physical model that quantitatively relates material properties to structural parameters. This framework will be used to screen a range of alloys with a goal of identifying new families of SMAs with tailored shape memory properties in terms of transformation temperature, hysteresis and stability. The effort will initially focus on known cubic binary and ternary phases with Fe, Cu, or Ni as the main component, and will expand as necessary. The computational screening strategy will start with a rapid screening for alloy endpoints that exhibit relevant characteristics of thermoelastic martensitic transformations and stability. Promising structures will be investigated in more detail, focusing on the temperature dependence of their properties. Physical models will then be trained to rapidly interpolate thermomechanical properties of complex alloy compositions in the region spanning the endpoints. Materials systems of interest identified in the computational phase will be investigated experimentally using sputter-deposited composition spreads combined with combinatorial nanocalorimetry and resistivity measurement techniques. The methodology developed in this project and the ensuing fundamental understanding will provide a pathway to the targeted design of novel SMAs that serve a broad range of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术型形状记忆合金(SMA)是一种在温度变化时会发生较大形状变化的材料。这一独特的特性使SMA成为制造强大而轻便的执行器的理想选择,适用于各种应用。虽然SMA已经被许多商业技术采用--从智能手机中的图像稳定器到微创血管内手术工具--但商业上可用的SMA的相对较低的工作温度(通常在室温到100摄氏度之间)使它们不适合许多应用。需要在高得多或低得多的温度下工作的新合金,以防止环境温度波动造成的不经意的启动或允许在不利条件下工作。在这个项目中,将为新型SMA的合理设计开发一个框架。该框架将使用将材料属性与物理参数定量关联的物理模型,将高通量计算技术和实验技术结合起来。这一框架将被用来筛选一系列合金,目标是确定在工作温度和功能稳定性方面具有量身定制的形状记忆性能的新的SMA家族。计算策略将从快速筛选表现出形状记忆合金相关特征的合金终点开始。然后将对物理模型进行培训,以在跨越终点的区域内快速内插复杂合金成分的热机械性能。在计算阶段确定的感兴趣的材料系统然后将使用最先进的实验技术进行研究。本项目中开发的方法以及随后对导致形状记忆效应的相变的基本了解将为可能在广泛应用中使用的新型SMA的目标设计提供一条途径。这种方法也可以很容易地转移到其他类型的活性材料的设计和理解上,这些材料可能用于传感器或执行器。在这个项目中开发的计算方法非常适合计算材料科学的研究生课程,并将被纳入计算材料设计的研究生课程。该项目还将为本科生和当地公立学校的高中生提供暑期实习计划的背景,该计划将为学生提供一个学习环境,让他们试验材料、加工、建模和数据科学。技术摘要形状记忆合金(SMA)由于热弹性马氏体相变而发生大量可回复的形状变化。这些合金的致动能量密度比任何其他固态致动器都高一个数量级,因此对轻便和坚固的致动系统非常有意义。镍钛合金是最常用的形状记忆合金,其致动温度略高于环境温度。为了充分发挥SMA的潜力,需要能够在更高或更低温度下运行的新合金。在这个项目中,将为新型SMA的合理设计开发一个框架。该框架将使用将材料属性与结构参数定量关联的物理模型,将高通量计算技术和实验技术结合起来。这一框架将被用来筛选一系列合金,目标是确定在相变温度、滞后和稳定性方面具有量身定制的形状记忆性能的新的SMA家族。这项工作最初将专注于已知的以Fe、Cu或Ni为主要成分的立方二元和三元相,并将根据需要扩大。计算筛选策略将从快速筛选表现出热弹性马氏体相变和稳定性相关特征的合金终点开始。有希望的结构将被更详细地研究,重点是它们的性质与温度的关系。然后,将对物理模型进行培训,以在跨越终点的区域内快速插入复杂合金成分的热机械性质。在计算阶段确定的感兴趣的材料系统将使用溅射沉积的成分扩散结合组合纳米量度和电阻率测量技术进行实验研究。在这个项目中开发的方法和随之而来的基本理解将为服务于广泛应用的新型SMA的有针对性的设计提供一条途径。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
- DOI:10.1038/s41524-020-0283-z
- 发表时间:2020-03-18
- 期刊:
- 影响因子:9.7
- 作者:Vandermause, Jonathan;Torrisi, Steven B.;Kozinsky, Boris
- 通讯作者:Kozinsky, Boris
Temperature-resistance sensor arrays for combinatorial study of phase transitions in shape memory alloys and metallic glasses
- DOI:10.1016/j.scriptamat.2019.04.027
- 发表时间:2019-07
- 期刊:
- 影响因子:6
- 作者:Juanjuan Zheng;Haitao Zhang;Y. Miao;Shi Chen;J. Vlassak
- 通讯作者:Juanjuan Zheng;Haitao Zhang;Y. Miao;Shi Chen;J. Vlassak
Explosive martensitic transformation of supercooled austenite in CuZr-based thin-film shape memory alloys
- DOI:10.1016/j.actamat.2020.08.081
- 发表时间:2020-11
- 期刊:
- 影响因子:9.4
- 作者:Y. Miao;J. Vlassak
- 通讯作者:Y. Miao;J. Vlassak
Nanocalorimetry and Ab Initio Study of Ternary Elements in CuZr-Based Shape Memory Alloy
- DOI:10.1016/j.actamat.2019.10.025
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Y. Miao;R. Villarreal;A. Talapatra;R. Arróyave;J. Vlassak
- 通讯作者:Y. Miao;R. Villarreal;A. Talapatra;R. Arróyave;J. Vlassak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joost Vlassak其他文献
Joost Vlassak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joost Vlassak', 18)}}的其他基金
I-Corps: Photophoretically levitating platforms for atmospheric sensing and communications
I-Corps:用于大气传感和通信的光悬浮平台
- 批准号:
2345244 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Standard Grant
Stretchable, Tough, Water-Retaining Hydrogels for Non-Traditional Applications
适用于非传统应用的可拉伸、坚韧、保水水凝胶
- 批准号:
1404653 - 财政年份:2014
- 资助金额:
$ 43.35万 - 项目类别:
Standard Grant
DMREF/GOALI/Collaborative Research: High-Throughput Simulations and Experiments to Develop Metallic Glasses
DMREF/GOALI/协作研究:开发金属玻璃的高通量模拟和实验
- 批准号:
1435820 - 财政年份:2014
- 资助金额:
$ 43.35万 - 项目类别:
Standard Grant
Stress and Deformation caused by Insertion in Li Ion Batteries
插入锂离子电池引起的应力和变形
- 批准号:
1031161 - 财政年份:2010
- 资助金额:
$ 43.35万 - 项目类别:
Continuing Grant
An Experimental Study of the Work Hardening Behavior of Metallic Thin Films
金属薄膜加工硬化行为的实验研究
- 批准号:
0906892 - 财政年份:2009
- 资助金额:
$ 43.35万 - 项目类别:
Continuing Grant
The mechanical behavior of hybrid organic/inorganic structures for flexible electronics
柔性电子器件有机/无机杂化结构的机械行为
- 批准号:
0556169 - 财政年份:2006
- 资助金额:
$ 43.35万 - 项目类别:
Standard Grant
Acquisition of a Sputter Deposition System for Thin Films Research and Education
采购用于薄膜研究和教育的溅射沉积系统
- 批准号:
0215902 - 财政年份:2002
- 资助金额:
$ 43.35万 - 项目类别:
Standard Grant
CAREER: Study of the Mechanical Properties of Thin Metal Films and Shape Memory Alloy Coatings
职业:金属薄膜和形状记忆合金涂层的机械性能研究
- 批准号:
0133559 - 财政年份:2002
- 资助金额:
$ 43.35万 - 项目类别:
Continuing Grant
相似国自然基金
损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
- 批准号:82371721
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
增强子在小鼠早期胚胎细胞命运决定中的功能和调控机制研究
- 批准号:82371668
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
- 批准号:82371276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
"胚胎/生殖细胞发育特性激活”促进“神经胶质瘤恶变”的机制及其临床价值研究
- 批准号:82372327
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
TMEM30A介导的磷脂酰丝氨酸外翻促进毛细胞-SGN突触发育成熟的机制研究
- 批准号:82371172
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
细胞核分布基因NudCL2在细胞迁移及小鼠胚胎发育过程中的作用及机制研究
- 批准号:31701214
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
B cell lineage directed rational vaccine strategies based on CAP256SU Env-Ab coevolution
基于 CAP256SU Env-Ab 协同进化的 B 细胞谱系定向合理疫苗策略
- 批准号:
10617381 - 财政年份:2022
- 资助金额:
$ 43.35万 - 项目类别:
Rational design and evaluation of novel mRNA vaccines against MERS-CoV
针对 MERS-CoV 的新型 mRNA 疫苗的合理设计和评估
- 批准号:
10335159 - 财政年份:2021
- 资助金额:
$ 43.35万 - 项目类别:
Rational design and evaluation of novel mRNA vaccines against MERS-CoV
针对 MERS-CoV 的新型 mRNA 疫苗的合理设计和评估
- 批准号:
10410839 - 财政年份:2021
- 资助金额:
$ 43.35万 - 项目类别:
Rational Design and Characterization of a Conformationally Stabilized Next-Generation Immunogen Against Malaria
构象稳定的下一代抗疟疾免疫原的合理设计和表征
- 批准号:
440100 - 财政年份:2020
- 资助金额:
$ 43.35万 - 项目类别:
Studentship Programs
Rational Design and Characterization of a Conformationally Stabilized Next-Generation Immunogen Against Malaria
构象稳定的下一代抗疟疾免疫原的合理设计和表征
- 批准号:
437188 - 财政年份:2020
- 资助金额:
$ 43.35万 - 项目类别:
Studentship Programs
Rational Structure-Based Design of Broad Neutralizing Humanized svMP mAbs
基于合理结构的广泛中和人源化 svMP 单克隆抗体的设计
- 批准号:
10310508 - 财政年份:2020
- 资助金额:
$ 43.35万 - 项目类别:
Rational generation of high-performance recombinant antibodies to post-translational modifications
针对翻译后修饰的高性能重组抗体的合理生成
- 批准号:
10025208 - 财政年份:2020
- 资助金额:
$ 43.35万 - 项目类别:
Rational design and B cell responses of HIV epitope vaccines
HIV表位疫苗的合理设计和B细胞反应
- 批准号:
9270983 - 财政年份:2016
- 资助金额:
$ 43.35万 - 项目类别:
Rational design and B cell responses of HIV epitope vaccines
HIV表位疫苗的合理设计和B细胞反应
- 批准号:
10056970 - 财政年份:2016
- 资助金额:
$ 43.35万 - 项目类别: