Antiferromagnet-based Ultrafast Magnetic Memory Devices
基于反铁磁体的超快磁存储器件
基本信息
- 批准号:1808826
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Compared with existing computer memories, memories based on magnetic materials have advantages of lower power consumption and better scalability. Moreover, information is retained in magnetic memories in the absence of power supply, providing possibilities of new computing schemes. However, existing magnetic memory devices have relatively low operating speed, which greatly limits their application. In this proposal, magnetic memory devices with ultrafast writing speed (1 nanosecond) will be developed, which can potentially bring in revolutionary changes in memory and data storage industry. The realization of the ultrafast control of magnetic dynamics could also advance understanding on the properties of magnetic materials. In addition to these broad scientific impacts, this project also provides students with unique transdisciplinary training opportunities. This research project is proposed to be integrated with the educational missions, including inspiring career interest of K-12 students in science and engineering; providing undergraduate students with cutting-edge research opportunities; and preparing students for future careers through curriculum development and interdisciplinary collaboration.To realize ultrafast magnetic memories, this proposal tries to leverage the fast development of fabrication techniques on spintronic devices with the recent advancement in new magnetic materials. Particularly, antiferromagnet will be studied for realizing magnetic memories with superior speed and high storage density. Compared with regular ferromagnet, antiferromagnet has ultrafast dynamics due to the high magnetic resonance frequency. However so far the lack of efficient control and detection mechanisms in antiferromagnet has made it challenging for practical implementations of antiferromagnet in magnetic memory devices. In this proposal, the PI focuses on spintronic devices made from antiferromagnet with internally broken inversion symmetry, where the inequality of the two sub-lattices allows the generation of staggered spin orbit torque and provides the possibility for magnetic probing and manipulation. The goals of the proposed experimental efforts include quantitatively determining the writing efficiency as well as exploring and optimizing the reading mechanisms of antiferromagnet. Specifically, a unique scheme for measuring antiferromagnet spin orbit torque is proposed, through which the underlying mechanisms for antiferromagnet switching will be revealed and quantified. Moreover, the switching speed of antiferromagnet devices will also be evaluated and the limiting factors on efficient magnetic switching will be determined through the antiferromagnet domain movement experiment. Finally, a high ON/OFF ratio will be pursued through the study of tunneling anisotropy magnetoresistance, which can lead to an efficient reading mechanism for antiferromagnet devices. In overall, the proposed research activities will not only facilitate the realization of practical antiferromagnet magnetic memory devices with fast accessing time and high density, but also enhance understanding on the current induced dynamics in antiferromagnet and widen awareness of the spin charge interaction in antiferromagnetically coupled systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与现有的计算机存储器相比,基于磁性材料的存储器具有功耗低、可扩展性好等优点。此外,在没有电源的情况下,信息仍保留在磁存储器中,为新的计算方案提供了可能性。然而,现有的磁存储器件的运行速度相对较低,这大大限制了它们的应用。通过该提案,将开发具有超快写入速度(1纳秒)的磁存储器件,这可能会给存储器和数据存储行业带来革命性的变化。磁动力学的超快控制的实现也可以促进对磁性材料性质的认识。除了这些广泛的科学影响外,该项目还为学生提供了独特的跨学科培训机会。本研究项目拟与教育使命相结合,包括激发K-12学生对理工科的职业兴趣;为本科生提供前沿研究机会;并通过课程开发和跨学科合作为学生未来的职业生涯做好准备。为了实现超快磁记忆,本方案试图利用自旋电子器件制造技术的快速发展和新磁性材料的最新进展。特别地,反铁磁体将被研究用于实现高速度和高存储密度的磁存储器。与常规铁磁体相比,反铁磁体由于共振频率高,具有超快的动力学特性。然而,到目前为止,反铁磁体缺乏有效的控制和检测机制,这给反铁磁体在磁存储器件中的实际实现带来了挑战。在这个提议中,PI专注于由内部逆对称性破缺的反铁磁体制成的自旋电子器件,其中两个子晶格的不平等允许产生交错的自旋轨道扭矩,并为磁探测和操纵提供了可能性。本实验的目标包括定量确定反铁磁体的写入效率以及探索和优化反铁磁体的读取机制。具体而言,提出了一种独特的测量反铁磁体自旋轨道转矩的方案,通过该方案可以揭示和量化反铁磁体开关的潜在机制。此外,还将通过反铁磁畴运动实验来评估反铁磁器件的开关速度,并确定有效磁开关的限制因素。最后,将通过研究隧道各向异性磁电阻来追求高开/关比,这可以导致反铁磁体器件的高效读取机制。总的来说,本文的研究活动不仅有助于实现具有快速访问时间和高密度的实用反铁磁体磁存储器件,而且有助于加深对反铁磁体中电流诱导动力学的理解,并扩大对反铁磁体耦合系统中自旋电荷相互作用的认识。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-Orbit-Torque Switching Mediated by an Antiferromagnetic Insulator
- DOI:10.1103/physrevapplied.11.044070
- 发表时间:2019-04
- 期刊:
- 影响因子:4.6
- 作者:Hailong Wang;Joseph Finley;Pengxiang Zhang;Jiahao Han;J. Hou;Luqiao Liu
- 通讯作者:Hailong Wang;Joseph Finley;Pengxiang Zhang;Jiahao Han;J. Hou;Luqiao Liu
Gigahertz Frequency Antiferromagnetic Resonance and Strong Magnon-Magnon Coupling in the Layered Crystal CrCl3
- DOI:10.1103/physrevlett.123.047204
- 发表时间:2019-07-24
- 期刊:
- 影响因子:8.6
- 作者:MacNeill, David;Hou, Justin T.;Liu, Luqiao
- 通讯作者:Liu, Luqiao
Resonant Spin Transmission Mediated by Magnons in a Magnetic Insulator Multilayer Structure
- DOI:10.1002/adma.202008555
- 发表时间:2021-04-25
- 期刊:
- 影响因子:29.4
- 作者:Fan, Yabin;Finley, Joseph;Liu, Luqiao
- 通讯作者:Liu, Luqiao
Manipulation of Coupling and Magnon Transport in Magnetic Metal-Insulator Hybrid Structures
- DOI:10.1103/physrevapplied.13.061002
- 发表时间:2020-06-15
- 期刊:
- 影响因子:4.6
- 作者:Fan, Yabin;Quarterman, P.;Liu, Luqiao
- 通讯作者:Liu, Luqiao
Birefringence-like spin transport via linearly polarized antiferromagnetic magnons
- DOI:10.1038/s41565-020-0703-8
- 发表时间:2020-06-01
- 期刊:
- 影响因子:38.3
- 作者:Han, Jiahao;Zhang, Pengxiang;Liu, Luqiao
- 通讯作者:Liu, Luqiao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luqiao Liu其他文献
Spin Hall effect tunneling spectroscopy
自旋霍尔效应隧道光谱
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Luqiao Liu;Ching;Jonathan Z. Sun;G. Hu;D. Worledge - 通讯作者:
D. Worledge
Spin Dynamics at the Nanoscale and its Applications: A Symposium in Honor of Andy Kent
纳米尺度的自旋动力学及其应用:纪念安迪·肯特的研讨会
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Luqiao Liu;G. Beach;L. Diez;D. Ravelosona;Mingzhong Wu;U. Ruediger;J. Mohammadi;D. Gopman;I. Schuller;E. Barco;S. Rakheja;Stefano Bonetti;S. Mangin;C. Ciccarelli;J. Shabani;S. Parkin - 通讯作者:
S. Parkin
Nonlinear wave-spin interactions in nitrogen-vacancy centers
氮空位中心的非线性波自旋相互作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.6
- 作者:
Zhongqiang Hu;Qiuyuan Wang;C. Chou;J. Hou;Zhiping He;Luqiao Liu - 通讯作者:
Luqiao Liu
Coherent antiferromagnetic spintronics
相干反铁磁自旋电子学
- DOI:
10.1038/s41563-023-01492-6 - 发表时间:
2023-03-20 - 期刊:
- 影响因子:38.500
- 作者:
Jiahao Han;Ran Cheng;Luqiao Liu;Hideo Ohno;Shunsuke Fukami - 通讯作者:
Shunsuke Fukami
Coherent and incoherent spin torque oscillations in a nanopillar magnetic spin-valve
纳米柱磁性自旋阀中的相干和非相干自旋扭矩振荡
- DOI:
10.1063/1.4812299 - 发表时间:
2013 - 期刊:
- 影响因子:4
- 作者:
P. Braganca;O. Lee;O. Ozatay;Luqiao Liu;G. Finocchio;D. Ralph;R. Buhrman - 通讯作者:
R. Buhrman
Luqiao Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luqiao Liu', 18)}}的其他基金
A Spin Torque Oscillator Maser Device Enabled by Spin-Microwave Photon Coupling
自旋微波光子耦合实现的自旋扭矩振荡器脉泽装置
- 批准号:
2309838 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Interactions between spin wave and magnetic domain structures
自旋波与磁畴结构之间的相互作用
- 批准号:
2104912 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Spin-Orbit Interaction based Spintronics with Superconductors
职业:基于自旋轨道相互作用的超导体自旋电子学
- 批准号:
1653553 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Metasurface-based Ultrafast Optical Metrology
基于超表面的超快光学计量
- 批准号:
2330802 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
SBIR Phase I: A unique aerogel-based separator technology for safety and ultrafast charging of batteries
SBIR 第一阶段:独特的基于气凝胶的隔膜技术,可实现电池的安全和超快速充电
- 批准号:
2304448 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Ultrafast holography calculation based on image processing of wavefronts
基于波前图像处理的超快全息计算
- 批准号:
22H03616 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultrafast time- and frequency-resolved imaging based on FT spectroscopy
基于 FT 光谱的超快时间和频率分辨成像
- 批准号:
22K19015 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
ASCENT: Using Optical Frequency Comb for Ultrafast Nature-Based Computing for Machine Learning Algorithms
ASCENT:使用光学频率梳进行机器学习算法的超快基于自然的计算
- 批准号:
2231036 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Petaherz-scale solid state physics exploring by attosecond high-harmonic-based ultrafast spectroscopy
基于阿秒高次谐波的超快光谱探索太赫兹尺度的固体物理
- 批准号:
20H05670 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Ultrafast fibre--based devices for biomedical applications
用于生物医学应用的超快光纤设备
- 批准号:
RGPIN-2016-05101 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
RAPID ACCELERATION OF DIAGNOSTICS (RADX) PROGRAM: TECH PROJECT NO 2375 - MASSIVELY PARALLEL CENTRALIZED AND DECENTRALIZED ULTRAFAST COVID-19INFECTIOUS
快速加速诊断 (RADX) 计划:技术项目编号 2375 - 大规模并行集中式和分散式超快 COVID-19 感染
- 批准号:
10506003 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Ultrafast fibre--based devices for biomedical applications
用于生物医学应用的超快光纤设备
- 批准号:
RGPIN-2016-05101 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Nitride-based spintronics materials for ultrafast current-induced domain wall motion
用于超快电流感应畴壁运动的氮化物自旋电子材料
- 批准号:
19KK0104 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))














{{item.name}}会员




