EAGER: Spintronic extreme sub-wavelength and super-gain active electronically scanned antenna (AESA) enabled by phonon-magnon-plasmon-photon coupling.

EAGER:自旋电子极端亚波长和超增益有源电子扫描天线(AESA),通过声子-磁振子-等离子体-光子耦合实现。

基本信息

  • 批准号:
    2235789
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

A serious shortcoming of conventional antennas is that their efficiencies plummet when they are made much smaller than the wavelength of the electromagnetic radiation they transmit. This is an impediment to building ultra-small antennas that can be medically implanted in a patient or embedded in a stealth device for defense or crime-fighting. This roadblock has been recently overcome by a novel genre of antennas implemented with magnetostrictive nanomagnets built on a piezoelectric substrate. A periodic electric field applied to the substrate periodically strains the nanomagnets, which makes their magnetizations oscillate in time and emit electromagnetic waves. The phenomenon that underlies this effect is phonon-magnon-photon coupling. The efficiencies of these novel antennas were found to exceed the theoretical limits on the efficiencies of traditional antennas by more than 100,000 times. The present research will introduce an additional feature by coupling electric charge oscillations (called plasmons) into the antennas by modifying their structure, which can significantly improve the antenna performance. Moreover, by manipulating the direction of the periodic electric field applied to the substrate, the direction of the strain wave propagating in the substrate can be changed, which may allow capability to steer the radiated electromagnetic beam in space, thereby implementing an active electronically scanned antenna (AESA). These antennas will have the potential to open up many new embedded applications, e.g., medically implanted devices that communicate with external monitors while consuming miniscule amounts of energy, ultra-small stealthy listening devices, personal communicators and wearable electronics. Apart from the fundamental knowledge and technological impact the proposed research will benefit society by producing graduate and undergraduate students trained in nanofabrication, characterization and measurement, as well as in device simulation and design. Particular attention will be paid to entrepreneurship opportunities, increasing K-12 and minority participation through various programs, and educating public through popular lectures and internet blogs.Recently it has been demonstrated in the PI’s group that periodic arrays of magnetostrictive nanomagnets deposited on a piezoelectric substrate (a two-dimensional artificial multiferroic crystal), can generate a novel genre of spintronic electromagnetic nano-antennas whose gain and radiation efficiency exceed by several orders of magnitude reaching theoretical limits as compared to traditional (electromagnetically actuated) antennas of the same dimensions. A low frequency (~100 MHZ) surface acoustic wave (SAW) launched into the substrate excites magnetization precession in the nanomagnets via the Villari effect and the precessing magnetization radiates electromagnetic waves in the surrounding medium at the SAW frequency, thereby resulting a novel antenna A high frequency (~10 GHz) SAW, on the other hand, resonantly excites confined spin wave modes in the nanomagnet via phonon-magnon coupling and these spin waves then radiate electromagnetic waves (photons) into the surrounding medium via magnon-photon coupling at the same frequency as the SAW. This constituted tripartite phonon-magnon-photon coupling. The proposed research will extend the concept by introducing surface plasmons into the mode mixing to study four-way phonon-plasmon-magnon-photon coupling which is expected to enhance the mode conversion efficiency from phonons to plasmons to magnons to photons, thereby enhancing antenna properties. Additionally, it has been observed that the antenna radiation pattern changes if the direction of SAW propagation changes with respect to the easy axes of the nanomagnets. The goal of this project is to exploit this feature to electronically steer the radiated beam by changing the direction of SAW propagation in an effort to implement an active electronically scanned antenna (AESA).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统天线的一个严重缺点是,当它们被制造得比它们所发射的电磁辐射的波长小得多时,它们的效率会直线下降。这是制造超小型天线的一个障碍,这种天线可以在医学上植入病人体内,也可以嵌入隐形设备中用于防御或打击犯罪。这个障碍最近已经克服了一种新的类型的天线实现与磁致伸缩纳米磁铁建立在压电基板上。施加到衬底上的周期性电场周期性地使纳米磁体产生应变,这使得它们的磁化强度随时间振荡并发射电磁波。这种效应背后的现象是声子-磁振子-光子耦合。研究发现,这些新型天线的效率超过传统天线效率的理论极限100,000倍以上。目前的研究将引入一个额外的功能,通过耦合电荷振荡(称为等离子体)到天线通过修改它们的结构,这可以显着提高天线的性能。此外,通过操纵施加到衬底的周期性电场的方向,可以改变在衬底中传播的应变波的方向,这可以允许在空间中操纵辐射的电磁波束的能力,从而实现有源电子扫描天线(AESA)。这些天线将有可能开辟许多新的嵌入式应用,例如,医疗植入设备,与外部监视器通信,同时消耗极少量的能量,超小型隐形监听设备,个人通讯器和可穿戴电子产品。除了基础知识和技术影响外,拟议的研究还将通过培养在纳米制造,表征和测量以及器件模拟和设计方面接受过培训的研究生和本科生来造福社会。将特别关注创业机会,通过各种计划增加K-12和少数民族的参与,并通过流行的讲座和互联网博客教育公众。(二维人造多铁性晶体),可以产生一种新型的自旋电子电磁纳米-与相同尺寸的传统(电磁激励)天线相比,其增益和辐射效率超过几个数量级,达到理论极限。 低频发射到衬底中的(~100 MHz)表面声波(SAW)通过Villari效应激发纳米磁体中的磁化旋进,并且旋进磁化以SAW频率在周围介质中辐射电磁波,从而产生新型天线。另一方面,通过声子-磁振子耦合共振激发纳米磁体中的受限自旋波模式,然后这些自旋波通过磁振子-光子耦合以与SAW相同的频率将电磁波(光子)辐射到周围介质中。这构成了三重声子-磁振子-光子耦合。拟议的研究将通过将表面等离子体激元引入模式混合来研究四路声子-等离子体激元-磁振子-光子耦合来扩展概念,这有望提高从声子到等离子体激元到磁振子到光子的模式转换效率,从而增强天线性能。另外,已经观察到,如果SAW传播的方向相对于纳米磁体的易磁化轴改变,则天线辐射图案改变。该项目的目标是利用这一功能,通过改变SAW传播的方向,以电子方式控制辐射波束,从而实现有源电子扫描天线(AESA)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Supriyo Bandyopadhyay其他文献

Reducing error rates in straintronic multiferroic dipole-coupled nanomagnetic logic by pulse shaping
通过脉冲整形降低应变电子多铁偶极耦合纳米磁逻辑的错误率
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Munira;Yunkun Xie;S. Nadri;M. Forgues;Mohammad Salehi Fashami;J. Atulasimha;Supriyo Bandyopadhyay;Avik W. Ghosh
  • 通讯作者:
    Avik W. Ghosh
Granular nanoelectronics
颗粒纳米电子学
  • DOI:
    10.1109/45.489730
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Supriyo Bandyopadhyay;V. Roychowdhury
  • 通讯作者:
    V. Roychowdhury
Information Processing with Electron Spins
电子自旋信息处理
Extreme Subwavelength Magnetoelastic Electromagnetic Antenna Implemented with Multiferroic Nanomagnets
采用多铁纳米磁体实现的极亚波长磁弹性电磁天线
  • DOI:
    10.1002/admt.202000316
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    J. Drobitch;Anulekha De;K. Dutta;P. Pal;A. Adhikari;A. Barman;Supriyo Bandyopadhyay
  • 通讯作者:
    Supriyo Bandyopadhyay
Skewed Straintronic Magnetotunneling-Junction-Based Ternary Content-Addressable Memory—Part II
基于偏应变电子磁隧道效应的三元内容可寻址存储器——第二部分
  • DOI:
    10.1109/ted.2017.2706744
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Susmita Dey Manasi;M. Al;J. Atulasimha;Supriyo Bandyopadhyay;A. Trivedi
  • 通讯作者:
    A. Trivedi

Supriyo Bandyopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Supriyo Bandyopadhyay', 18)}}的其他基金

FET: Small: Collaborative Research: A Probability Correlator for All-Magnetic Probabilistic Computing: Theory and Experiment
FET:小型:协作研究:全磁概率计算的概率相关器:理论与实验
  • 批准号:
    2006843
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-Tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
  • 批准号:
    2001255
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Single nanowire spin-valve based infrared photodetctors and equality bit comparators
基于单纳米线自旋阀的红外光电探测器和等位比较器
  • 批准号:
    1609303
  • 财政年份:
    2016
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NEB: Hybrid Spintronics and Straintronics: A New Technology for Ultra-Low Energy Computing and Signal Processing Beyond the Year 2020.
NEB:混合自旋电子学和应变电子学:2020 年以后超低能耗计算和信号处理的新技术。
  • 批准号:
    1124714
  • 财政年份:
    2011
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Single Spin Logic and Matrix Element Engineering: A New Nanoelectronic Computing Paradigm for Ultra Low Power Dissipation
单自旋逻辑和矩阵元件工程:超低功耗的新纳米电子计算范式
  • 批准号:
    0726373
  • 财政年份:
    2007
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NIRT: Collective Computation with Self Assembled Quantum Dots, Nanodiodes and Nanowires: A Novel Paradigm for Nanoelectronics
NIRT:使用自组装量子点、纳米二极管和纳米线进行集体计算:纳米电子学的新范式
  • 批准号:
    0506710
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Collaborative GOALI Proposal: Self-assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
  • 批准号:
    0523966
  • 财政年份:
    2005
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NER: Nanowire Non-Volatile Memory
NER:纳米线非易失性存储器
  • 批准号:
    0403494
  • 财政年份:
    2004
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
NER: Novel Electrochemically Self Assembled Nanowire Infrared Photodetectors
NER:新型电化学自组装纳米线红外光电探测器
  • 批准号:
    0206950
  • 财政年份:
    2002
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
SGER: A Self Assembled Spintronic Quantum Gate
SGER:自组装自旋电子量子门
  • 批准号:
    0196554
  • 财政年份:
    2001
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似海外基金

Two-Dimensional Magnets in Spintronic Devices: Roles of Spin Fluctuations
自旋电子器件中的二维磁体:自旋涨落的作用
  • 批准号:
    2401267
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
LIONESS - Light-controlled nanomagnetic and spintronic applications via magneto-thermoplasmonics
LIONESS - 通过磁热等离子体的光控纳米磁性和自旋电子应用
  • 批准号:
    MR/X033910/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Fellowship
Postdoctoral Fellowship: CREST-PRP: Investigation and design of Molecular Spintronic photovoltaic devices via Raman Spectroscopy
博士后奖学金:CREST-PRP:通过拉曼光谱研究和设计分子自旋电子光伏器件
  • 批准号:
    2401024
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Opto-Spintronic interfaces for next generation quantum networks - (SpinNet)
用于下一代量子网络的光自旋电子接口 - (SpinNet)
  • 批准号:
    EP/X017850/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Magnetic Octupole Based Next-generation Spintronic Devices in XY-like Chiral Antiferromagnets
基于磁性八极子的类 XY 手性反铁磁体中的下一代自旋电子器件
  • 批准号:
    2331109
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311296
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Thin film intermetallic materials for spintronic applications
用于自旋电子学应用的薄膜金属间材料
  • 批准号:
    2889340
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Studentship
Developing novel spintronic devices by using stackable crystalline membranes
利用可堆叠晶体膜开发新型自旋电子器件
  • 批准号:
    23KJ1239
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring topological and quantum effects in ferromagnetic Weyl semimetals for spintronic devices
探索用于自旋电子器件的铁磁外尔半金属的拓扑和量子效应
  • 批准号:
    22KF0035
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了