Collaborative Research: Microengineered electroactive polymer strain sensors towards soft self-powered wearable cyber-physical systems
合作研究:面向软自供电可穿戴网络物理系统的微工程电活性聚合物应变传感器
基本信息
- 批准号:1809455
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent research efforts have emphasized the vital role of soft strain sensors in a variety of applications in bioengineering, rehabilitation and medicine, soft robotics, and human-machine interactions. Current soft strain sensors often necessitate external power for operation that severely limits the possibility to make such sensors light weight, comfortable to wear, and capable of functioning over long periods of time. On the other hand, existing self-powered sensors, such as piezoelectric ceramics, are typically very stiff, non-stretchable, and limited to extremely small deformations. Thus, there exists a clear and urgent need to identify novel sensing systems that combine self-powered behavior with soft mechanical characteristics. This research will result in the development of the next generation of soft, self-powered, high sensitivity polymer-based strain sensors for applications in novel biomedical and soft robotics endeavors. When successfully deployed, these sensors could be embedded in smart gloves for use in hand rehabilitation by patients suffering from stroke or Parkinson's disease, as well as an instrumentation suite for prosthetic devices or in human-machine interfaces, or could be embedded in wearable adhesive patches and interfaced with smartphones and the internet for continuous remote personal health monitoring of vital signs. Furthermore, this project will lead to discover novel electroactive materials systems, promote advancements in advanced manufacturing and mechatronics, and benefit the multiphysics modeling community. This research will support and impact the education of graduate and undergraduate students, contributing to the formation of the next generation of researchers, engineers, and educators. Active involvement of underrepresented students will be pursued via educational and outreach activities. This project aims at establishing a new class of electroactive materials with superior multiphysics properties towards soft, self-powered, high sensitivity strain sensor applications in cyber-physical systems. Ionic polymer metal composites are electroactive soft composite materials that comprise a thin electrically charged polymer membrane, plated with noble metal electrodes, and infused with a charged solution. Due to their combined self-powered sensor behavior and soft mechanical characteristics, ionic polymer metal composites emerge as an ideal candidate for soft strain sensor applications. However, inconsistent and uncontrollable morphology of their polymer-metal interfaces poses the challenges of limited sensitivity, poor property control, and non-versatile mode of operation. So far, these challenges have limited the use of these materials in critical engineering applications. It is hypothesized that the multiphysics sensing properties of ionic polymer metal composites can be dramatically enhanced by tailored 3D-structured microengineered polymer-metal interfaces. To test this hypothesis, this research will develop a novel fabrication process integrating electroless chemical reduction with inkjet printing to prepare ionic polymer metal composites with microengineered interfaces. These interfaces are responsible for inhomogeneous strain developed in response to a mechanical stimulus and its subsequent electrochemical transduction and sensing performance. The main goal of this research is to gain a comprehensive understanding of the structure-property relationships in microengineered ionic polymer metal composites that determine enhanced strain sensing performance. This goal will be achieved by integrating theoretical multiphysics modeling and experimental efforts and by synergizing the investigators' complementary expertise in modeling of smart materials and systems, advanced manufacturing, sensing systems, and mechatronics and controls. This project will elucidate the role of polymer-electrode interfaces in shaping the chemoelectromechanical response of the system and formalize experimentally validated models that incorporate interface morphology information to predict multiphysics sensing properties. The potential of the proposed sensing system will be demonstrated by designing, manufacturing, and testing functional sensors in experimental platforms for studies on soft robotics and human-machine interaction. The knowledge gained through this project will significantly advance the state of understanding of electroactive materials towards development of high performance sensing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的研究工作强调了软应变传感器在生物工程,康复和医学,软机器人和人机交互等各种应用中的重要作用。目前的软应变传感器通常需要外部电源来操作,这严重限制了使这种传感器重量轻、佩戴舒适并且能够长时间工作的可能性。另一方面,现有的自供电传感器,如压电陶瓷,通常非常坚硬,不可拉伸,并限于极小的变形。因此,存在对识别将自供电行为与软机械特性相结合的联合收割机的新颖感测系统的明确且迫切的需求。 这项研究将导致下一代软,自供电,高灵敏度聚合物应变传感器的开发,用于新的生物医学和软机器人的努力。当成功部署时,这些传感器可以嵌入智能手套中,用于中风或帕金森病患者的手部康复,以及用于假肢设备或人机界面的仪器套件,或者可以嵌入可穿戴粘合剂贴片并与智能手机和互联网连接,用于连续远程个人健康监测生命体征。此外,该项目将导致发现新的电活性材料系统,促进先进制造和机电一体化的进步,并使多物理场建模社区受益。这项研究将支持和影响研究生和本科生的教育,有助于下一代研究人员,工程师和教育工作者的形成。将通过教育和外联活动,争取代表性不足的学生积极参与。该项目旨在建立一类新的电活性材料,具有上级多物理特性,适用于网络物理系统中的软,自供电,高灵敏度应变传感器应用。离子聚合物金属复合材料是电活性软复合材料,其包括薄的带电聚合物膜,镀有贵金属电极,并注入带电溶液。由于它们的自供电传感器行为和软机械特性的组合,离子聚合物金属复合材料成为软应变传感器应用的理想候选者。然而,它们的聚合物-金属界面的不一致和不可控的形态构成了有限的灵敏度、差的性质控制和非通用操作模式的挑战。到目前为止,这些挑战限制了这些材料在关键工程应用中的使用。据推测,离子聚合物金属复合材料的多物理场传感性能可以显着增强定制的三维结构的微工程聚合物-金属界面。为了验证这一假设,本研究将开发一种新的制造工艺,将化学还原与喷墨打印相结合,以制备具有微工程界面的离子聚合物金属复合材料。这些界面负责响应于机械刺激及其随后的电化学转导和感测性能而产生的不均匀应变。本研究的主要目标是全面了解微工程离子聚合物金属复合材料的结构-性能关系,从而确定增强的应变传感性能。这一目标将通过整合理论多物理场建模和实验工作,并通过协同研究人员在智能材料和系统,先进制造,传感系统,机电一体化和控制建模方面的互补专业知识来实现。该项目将阐明聚合物-电极界面在塑造系统的化学机电响应中的作用,并正式确定实验验证的模型,该模型将界面形态信息用于预测多物理场传感特性。所提出的传感系统的潜力将通过在软机器人和人机交互研究的实验平台上设计、制造和测试功能传感器来证明。通过该项目获得的知识将大大推进对电活性材料的理解,以开发高性能传感系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ionic polymer metal composite compression sensors with 3D-structured interfaces
具有 3D 结构接口的离子聚合物金属复合材料压缩传感器
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Rebecca Histed, Justin Ngo
- 通讯作者:Rebecca Histed, Justin Ngo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kam Leang其他文献
Kam Leang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kam Leang', 18)}}的其他基金
GOALI/Collaborative Research: Precision Control of Nanopositioners
GOALI/合作研究:纳米定位器的精确控制
- 批准号:
1537983 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: HIGH-SPEED AFM IMAGING OF DYNAMICS ON BIOPOLYMERS THROUGH NON-RASTER SCANNING
合作研究:通过非光栅扫描对生物聚合物动力学进行高速 AFM 成像
- 批准号:
1461593 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: HIGH-SPEED AFM IMAGING OF DYNAMICS ON BIOPOLYMERS THROUGH NON-RASTER SCANNING
合作研究:通过非光栅扫描对生物聚合物动力学进行高速 AFM 成像
- 批准号:
1353101 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
PFI:BIC: Enhanced Situational Awareness Using Unmanned Autonomous Systems for Disaster Remediation
PFI:BIC:利用无人自治系统增强态势感知以进行灾难修复
- 批准号:
1430328 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
New: The NSF GK-12 E-Fellowship Program: Toward Energy-Aware STEM Leaders for the 21st Century
新内容:NSF GK-12 电子奖学金计划:迈向 21 世纪具有能源意识的 STEM 领导者
- 批准号:
1045584 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NUE: Integration of Nanotechnology into the ME curriculum via Energy Efficient Systems and Dynamic Structures
NUE:通过节能系统和动态结构将纳米技术整合到 ME 课程中
- 批准号:
0939261 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Project: Integration of Modeling and Control of Smart Actuators for Nano/Bio Technology into Mechanical Engineering Curriculum
合作项目:将纳米/生物技术智能执行器的建模和控制融入机械工程课程
- 批准号:
0852756 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A Novel Multifunctional SPM Probe with Modular Quick-Change Tips for Fully Automated Probe-Based Nanomanufacturing
一种新型多功能 SPM 探针,具有模块化快速更换针尖,适用于基于探针的全自动纳米制造
- 批准号:
0910570 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A Novel Multifunctional SPM Probe with Modular Quick-Change Tips for Fully Automated Probe-Based Nanomanufacturing
一种新型多功能 SPM 探针,具有模块化快速更换针尖,适用于基于探针的全自动纳米制造
- 批准号:
0726778 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Project: Integration of Modeling and Control of Smart Actuators for Nano/Bio Technology into Mechanical Engineering Curriculum
合作项目:将纳米/生物技术智能执行器的建模和控制融入机械工程课程
- 批准号:
0633098 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Training Grant