OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
基本信息
- 批准号:1609549
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract title: OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sourcesAbstract (general): Lithium-niobate is a revolutionary material that has played a major role in transforming optical telecommunications. It has enabled electronic data (0s and 1s) to be directly written onto light pulses that travel the globe and essentially form the backbone of the internet. It is also used to change the color of light emitted by lasers, of importance for high-speed computing and sensing, as well as to enable realization of novel quantum sources of light that may enable next-generation ultra-secure optical communications. However, currently the performance of lithium-niobate based optical devices is limited by their bulky size. This project aims to miniaturize these to the nanoscale by patterning lithium-niobate onto a photonic microchip, thereby enhancing their efficiency many-fold. This will enable the design of novel light sources with greatly improved properties compared to current technology and also significantly reduce the optical power requirements. The proposed research program is a natural template for informing students, teachers, and the public of how scientists and engineers explore the unique behavior of materials at the nanoscale, and make use of these properties in the creation of new devices. The team will leverage the "magic" of optics and lasers to engage a wide audience and inform the public of their ongoing research. The program has strong theoretical and experimental components and addresses both fundamental and engineering aspects of light-generation in nanoscale optical devices and systems. Therefore, it represents a unique research and educational opportunity for students at all levels. The devices and systems that will be developed will be of great interest to both the scientific community and commercial industry.Abstract (technical): Lithium-niobate, with its large second-order susceptibility, relatively large refractive index and wide transmission window extending from ultra-violet to mid-infrared, is one of the most important optoelectronic materials, widely used for electro-optic modulation and classical & quantum optical frequency conversion. However, due to difficulties associated with fabrication, most of these components are discrete and cannot be easily integrated onto a photonic microchip. Fortunately, recent advances in lithium-niobate thin-film fabrication techniques, via crystal ion slicing, are promising and enable chip-scale integration of nanophotonic devices. The proposed program builds on these results and seeks to develop an integrated nonlinear nanophotonics platform that combines the unique material properties of periodically-poled lithium-niobate with the superior light confinement and dispersion engineering in wavelength-scale optical waveguides and cavities. The new platform will be developed based on thin x-cut lithium-niobate device layers (~500-nm thick) bonded on top of a SiO2 substrate that provides optical isolation. The team will develop new techniques for surface poling of thin x-cut lithium-niobate films, thus allowing for efficient phase matching. State of the art nanofabrication techniques will be used to realize optical waveguides and cavities directly in the periodically-poled device layer. The devices will operate over a wide wavelength range (visible to mid-infrared) and enable strong photon interactions resulting in 40-fold more efficient nonlinear processes than those found in conventional counterparts. The program is expected to result in a wide variety of integrated devices and systems with applications in quantum frequency conversion, entangled-photon pair generation, supercontinuum generation, and frequency comb generation. The proposed program is transformative since it introduces lithium-niobate into the family of materials suitable for integrated, on-chip photonics. It will result in the development of a wide range of novel & more efficient nonlinear optical devices & systems, and make an impact on disciplines as diverse as quantum information science & technology, remote sensing, astronomy and optoelectronics.
摘要标题:OP合作研究:将锂酸盐带到纳米级:将革命性材料塑造到光子微芯片上以开发下一代光源摘要(一般):锂酸盐是一种革命性材料,在光通信领域发挥了重要作用。它使电子数据(0和1)能够直接写入光脉冲,这些光脉冲在地球仪上传播,基本上构成了互联网的主干。它还用于改变激光器发出的光的颜色,这对高速计算和传感至关重要,以及实现可能实现下一代超安全光通信的新型量子光源。然而,目前基于锂酸盐的光学器件的性能受到其庞大尺寸的限制。该项目旨在通过在光子微芯片上图案化锂离子来将这些纳米级,从而将其效率提高许多倍。这将使新型光源的设计与当前技术相比具有极大的改进性能,并且还显著降低了光功率要求。拟议的研究计划是一个自然的模板,告知学生,教师和公众科学家和工程师如何探索材料在纳米尺度上的独特行为,并利用这些特性来创建新设备。该团队将利用光学和激光的“魔力”吸引广大观众,并向公众介绍他们正在进行的研究。该计划具有很强的理论和实验组成部分,并解决了纳米级光学器件和系统中光生成的基本和工程方面。因此,它为各级学生提供了独特的研究和教育机会。将开发的设备和系统将是科学界和商业industrial.Abstract极大的兴趣(技术):锂的二阶极化率,相对较大的折射率和宽的传输窗口延伸到紫外到中红外,是最重要的光电材料之一,广泛用于电光调制和经典量子光学频率转换。然而,由于与制造相关的困难,这些组件中的大多数是离散的,并且不能容易地集成到光子微芯片上。幸运的是,最近的进展,锂离子薄膜制造技术,通过晶体离子切片,是有前途的,使芯片级集成的纳米光子器件。该计划建立在这些结果的基础上,并寻求开发一个集成的非线性纳米光子学平台,该平台将极化锂的独特材料特性与波长级光波导和腔体中的上级光限制和色散工程相结合。新平台将基于薄的x切割锂酸盐器件层(约500 nm厚)开发,该器件层粘合在提供光学隔离的SiO2衬底顶部。该团队将开发新技术,用于薄x切割锂酸盐薄膜的表面极化,从而实现有效的相位匹配。现有技术的纳米纤维技术将用于直接在极化器件层中实现光波导和腔。这些器件将在宽波长范围(可见光到中红外)内工作,并实现强光子相互作用,从而使非线性过程的效率比传统对应物高40倍。该计划预计将导致各种各样的集成器件和系统,应用于量子频率转换,纠缠光子对产生,超连续谱产生和频率梳产生。拟议的计划是变革性的,因为它将锂酸盐引入适合集成的片上光子学的材料家族。它将导致广泛的新型更有效的非线性光学器件系统的发展,并对量子信息科学技术,遥感,天文学和光电子学等学科产生影响。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Second harmonic generation in nano-structured thin-film lithium niobate waveguides
纳米结构薄膜铌酸锂波导中的二次谐波产生
- DOI:10.1364/oe.25.006963
- 发表时间:2017-03-20
- 期刊:
- 影响因子:3.8
- 作者:Wang, Cheng;Xiong, Xiao;Loncar, Marko
- 通讯作者:Loncar, Marko
Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation
- DOI:10.1038/s41467-019-08969-6
- 发表时间:2019-02-28
- 期刊:
- 影响因子:16.6
- 作者:Wang, Cheng;Zhang, Mian;Loncar, Marko
- 通讯作者:Loncar, Marko
Ultra-low-loss integrated visible photonics using thin-film lithium niobate
- DOI:10.1364/optica.6.000380
- 发表时间:2019-03-20
- 期刊:
- 影响因子:10.4
- 作者:Desiatov, Boris;Shams-Ansari, Amirhassan;Loncar, Marko
- 通讯作者:Loncar, Marko
Broadband electro-optic frequency comb generation in a lithium niobate microring resonator
- DOI:10.1038/s41586-019-1008-7
- 发表时间:2019-04-18
- 期刊:
- 影响因子:64.8
- 作者:Zhang, Mian;Buscaino, Brandon;Loncar, Marko
- 通讯作者:Loncar, Marko
Nanophotonic lithium niobate electro-optic modulators
- DOI:10.1364/oe.26.001547
- 发表时间:2018-01-22
- 期刊:
- 影响因子:3.8
- 作者:Wang, Cheng;Zhang, Mian;Loncar, Marko
- 通讯作者:Loncar, Marko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marko Loncar其他文献
部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
北 翔太;Mike Burek;Daquan Yang;Marko Loncar - 通讯作者:
Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
- DOI:
10.1109/nano.2002.1032255 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Jelena Vučković;T. Yoshie;Marko Loncar;H. Mabuchi;Axel Scherer - 通讯作者:
Axel Scherer
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
- DOI:
10.1063/1.4867254 - 发表时间:
2014-08 - 期刊:
- 影响因子:4
- 作者:
Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan - 通讯作者:
Qimin Quan
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
- DOI:
10.1109/qels.2002.1031116 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe - 通讯作者:
D. Deppe
Marko Loncar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marko Loncar', 18)}}的其他基金
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
- 批准号:
2320265 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
- 批准号:
2137723 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
- 批准号:
1825257 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
- 批准号:
1946564 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
- 批准号:
1810233 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
- 批准号:
1827720 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
- 批准号:
1839197 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
- 批准号:
1740296 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
- 批准号:
1507508 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
- 批准号:
1428694 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709601 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710514 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
- 批准号:
1720291 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720116 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709275 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant