QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform

QuIC-TAQS:集成铌酸锂量子光子平台

基本信息

  • 批准号:
    2137723
  • 负责人:
  • 金额:
    $ 250万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Quantum technology, which derives its advantage from the non-intuitive laws of quantum physics, promises to drastically alter the course of computer, network, and sensor development. The realization of this technology relies on the transmission of the smallest units of energy, often across large distances. This is challenging because each unit can be easily misidentified or lost to the environment. Fortunately, particles of light – photons - can circumvent this, and therefore are promising carriers of quantum information even in ambient conditions. However, it is an outstanding challenge to efficiently interface photons with emerging quantum technologies, such as quantum processors and sensors. Thus, realizing so-called quantum interconnects, quantum analog of optical networks that form the backbone of internet, is essential to enable scalability and usability of all quantum technologies. The team is combining expertise in microscale fabrication, non-linear optics, electronics, superconductivity, and material science, to realize transmitter and receiver elements of quantum interconnects for light, all integrated on a photonic chip. This interdisciplinary program provides a unique training ground for students and creates a pipeline for the quantum-ready workforce. The team is actively exploring opportunities for commercialization, leveraging partnerships with industry. Beyond the quantum realm, the team’s work is poised to advance the state of the art in classical communication technology.Optical photons have many attractive properties to realize quantum interconnects, the crucial interfaces between quantum technologies. Photons exist under ambient conditions, can travel long distances, are generally impervious to environmental noise, and can be generated, manipulated, and detected easily. These properties also introduce challenges to realizing quantum technologies that require deterministic interactions between photons, as well as efficient interactions between photons and matter qubits. Both are essential for transmitting quantum information over lossy or long-distance channel, by way of quantum repeaters. Overcoming limitations of existing photonic platforms, the team will develop a scalable, ultra-low-loss, integrated quantum photonic platform based on high-quality thin-film lithium niobate films, and utilize it to realize quantum transmitters and receivers. The approach uses frequency multiplexing and feed-forward to generate and distribute entanglement, leveraging fast single-photon detectors and switches, solid-state quantum memories, and photon pair sources, all integrated on the same chip. Importantly, our team is developing material growth techniques to realize high-quality and ultra-low-loss stoichiometric single-crystal lithium niobate device layers that outperform commercially available material. As an aspirational and stretch goal of the program, the PI and his collaborators are utilizing these components to demonstrate a frequency multiplexed photonic quantum repeater.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术的优势来自量子物理学的非直观定律,有望彻底改变计算机、网络和传感器的发展进程。这项技术的实现依赖于最小能量单位的传输,通常是远距离传输。这是具有挑战性的,因为每个单元都很容易被错误识别或丢失到环境中。幸运的是,光的粒子--光子--可以绕过这一点,因此即使在环境条件下也是有希望的量子信息载体。然而,将光子与新兴的量子技术(如量子处理器和传感器)有效地接口是一个突出的挑战。因此,实现所谓的量子互连,即形成互联网骨干的光网络的量子模拟,对于实现所有量子技术的可扩展性和可用性至关重要。该团队结合了微尺度制造,非线性光学,电子学,超导和材料科学方面的专业知识,以实现光量子互连的发射器和接收器元件,所有这些都集成在光子芯片上。这个跨学科的计划为学生提供了一个独特的培训基地,并为量子就绪的劳动力创造了一个管道。该团队正在积极探索商业化的机会,利用与行业的合作伙伴关系。在量子领域之外,该团队的工作有望推动经典通信技术的发展。光子具有许多吸引人的特性,可以实现量子互连,这是量子技术之间的关键接口。光子存在于环境条件下,可以传播很长的距离,通常不受环境噪声的影响,并且可以很容易地产生,操纵和检测。这些性质也给实现量子技术带来了挑战,这些技术需要光子之间的确定性相互作用,以及光子和物质量子比特之间的有效相互作用。这两个都是通过量子中继器在有损或长距离信道上传输量子信息所必需的。克服现有光子平台的局限性,该团队将开发一种基于高质量薄膜锂酸盐薄膜的可扩展、超低损耗、集成的量子光子平台,并利用它来实现量子发射器和接收器。该方法使用频率复用和前馈来产生和分配纠缠,利用快速单光子探测器和开关,固态量子存储器和光子对源,所有这些都集成在同一芯片上。重要的是,我们的团队正在开发材料生长技术,以实现高质量和超低损耗的化学计量比单晶钛酸锂器件层,其性能优于市售材料。作为该计划的一个理想和延伸目标,PI和他的合作者正在利用这些组件来演示频率复用光子量子中继器。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies
  • DOI:
    10.1103/prxquantum.2.017002
  • 发表时间:
    2021-02-24
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Awschalom, David;Berggren, Karl K.;Zhang, Zheshen
  • 通讯作者:
    Zhang, Zheshen
An Atomic Frequency Comb Memory in Rare-Earth-Doped Thin-Film Lithium Niobate
稀土掺杂薄膜铌酸锂原子频率梳存储器
  • DOI:
    10.1021/acsphotonics.2c01835
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Dutta, Subhojit;Zhao, Yuqi;Saha, Uday;Farfurnik, Demitry;Goldschmidt, Elizabeth A.;Waks, Edo
  • 通讯作者:
    Waks, Edo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Mike Burek;Daquan Yang;Marko Loncar
  • 通讯作者:
    Marko Loncar
高機械Q値のための音叉型ナノビーム振動子の提案
高机械Q值音叉型纳米束振荡器的提案
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Marko Loncar
  • 通讯作者:
    Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
  • 批准号:
    1825257
  • 财政年份:
    2019
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
  • 批准号:
    1810233
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
  • 批准号:
    1507508
  • 财政年份:
    2015
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了