Integrated Selective Growth of Diamond and GaN for Maximum Heat Extraction from Electronic Devices

金刚石和 GaN 的集成选择性生长可最大限度地从电子设备中提取热量

基本信息

  • 批准号:
    1810419
  • 负责人:
  • 金额:
    $ 41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Diamond, as an electronic material, has the best heat conduction properties and is readily produced by commercial equipment and processes. Gallium nitride is a semiconductor material that has seen recent commercial success in high efficiency light emitting diode bulbs, radio wave communications and radars, and power conversion switches.However, the full potential of gallium nitride is limited by the material's inability to efficiently conduct heat. Therefore, the project's aim is to combine diamond and gallium nitride in a novel approach that will focus on (1) the processes that produce both materials, (2) an in-depth characterization of the electronic and thermal properties (emphasizing heat flow), (3) fabrication of test structures, and (4) thermal conduction simulations. There are broad needs for combining diamond's thermal benefits within individual circuitry that comprises today's electronics.Transistors and switches (the backbone of the entire high-tech industry) are well known to produce substantial heat, and the problem is continually getting worse as devices become smaller and the density of electronic components packed together on circuit boards increases. (In personal electronics, consider how hot smart phones and laptops become during regular usage.) Specific applications that will benefit from the research include electric vehicles, power conversion for flexible integration of renewable energy sources to the nation's power grid, radar systems and communications systems for first-responder, defense and civilian uses. The research will result in basic and applied knowledge regarding the diamond-gallium nitride interface. Results will be published in peer-reviewed journals and presented at national and international conferences. Student engagement and education efforts will take place through research and classroom experiences and a strong culture of undergraduate research at the affiliate's institution.The primary goal of the research is to develop a novel diamond-GaN interface and fully characterize its thermal transport characteristics. Innovative materials research will involve three-dimensional integration of GaN on diamond to significantly improve thermal management in high-power electronics. The high thermal conductivity of diamond makes it highly attractive for mitigating self-heating effects that plague the efficiency of switches and power transistors. An innovative path will be developed to selectively grow diamond and GaN to achieve close proximity to the current-carrying GaN two-dimensional electron gas for efficient heat removal. Systematic studies will focus on material growth and characterization. Characterization will emphasize interfaces of these materials and its impact on heat flow. Fabrication of electrical and electrothermal test structures will be conducted. These will be used in combination with electrical and optical measurements to investigate the effects of deposition and heterointerface quality on fundamental properties, including and thermal boundary resistance (TBR). The impact of these material properties on transistor operational limits will be examined with the aid of simulations. Selective diamond deposition will provide understanding to improve diamond quality, interface properties, and manage stresses resulting from thermal expansion mismatches. The impact of the growth steps, particularly of the diamond-GaN interfaces, on material and device properties will be studied by physical and optical methods. Test structures will be measured to determine thermal conductivity and TBR. Extensive characterization will correlate crystal quality and defect properties with these key macroscopic quantities in thermal transport and electrical performance. The research will result in basic and applied knowledge regarding material deposition and properties of the diamond?GaN interface region. Results will be published in peer-reviewed journals and presented at national and international conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金刚石作为一种电子材料,具有最好的导热性能,很容易用商业设备和工艺生产。氮化镓是一种半导体材料,最近在高效发光二极管灯泡、无线电波通信和雷达以及电力转换开关方面取得了商业上的成功。但是,氮化镓的全部潜力受到这种材料无法有效导热的限制。因此,该项目的目标是以一种新的方法将钻石和氮化镓结合起来,重点将放在(1)生产这两种材料的工艺,(2)电子和热性能的深入表征(强调热流),(3)测试结构的制造,以及(4)热传导模拟。在构成当今电子产品的单个电路中结合钻石的热效应有着广泛的需求。众所周知,晶体管和开关(整个高科技行业的支柱)会产生大量的热量,随着设备变得更小,电路板上组装的电子元件的密度增加,这个问题越来越严重。(在个人电子产品方面,想想智能手机和笔记本电脑在正常使用过程中变得多么炙手可热。)将从这项研究中受益的具体应用包括电动汽车、将可再生能源灵活整合到国家电网的电力转换、用于急救、国防和民用的雷达系统和通信系统。这项研究将产生关于金刚石-氮化镓界面的基本和应用知识。结果将发表在同行评议的期刊上,并在国内和国际会议上公布。学生的参与和教育工作将通过研究和课堂经验以及附属机构浓厚的本科生研究文化进行。研究的主要目标是开发一种新型的钻石-GaN界面并充分表征其热传输特性。创新材料研究将涉及在钻石上三维集成GaN,以显著改善大功率电子产品的热管理。金刚石的高导热性使其在缓解困扰开关和功率晶体管效率的自热效应方面具有极大的吸引力。将开发一条有选择地生长金刚石和GaN的创新路径,以实现与载流GaN二维电子气的紧密接近,从而有效地散热。系统的研究将集中在材料的生长和表征上。表征将强调这些材料的界面及其对热流的影响。将进行电气和电热测试结构的制造。这些测量将与电学和光学测量相结合,以研究沉积和异质界面质量对基本性能的影响,包括热阻(TBR)。这些材料特性对晶体管工作极限的影响将通过模拟来检验。选择性金刚石沉积将提供对改善钻石质量、界面特性和管理热膨胀失配引起的应力的理解。生长步骤,特别是金刚石-GaN界面对材料和器件性能的影响将通过物理和光学方法进行研究。将对测试结构进行测量,以确定导热系数和TBR。广泛的表征将把晶体质量和缺陷属性与这些在热传输和电学性能方面的关键宏观量联系起来。这项研究将产生关于材料沉积和金刚石-GaN界面区性质的基础和应用知识。结果将发表在同行评议的期刊上,并在国内和国际会议上公布。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of precursor stoichiometry on morphology, phase purity, and texture formation of hot filament CVD diamond films grown on Si (100) substrate
前驱体化学计量对 Si (100) 基底上生长的热丝 CVD 金刚石薄膜的形貌、相纯度和织构形成的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edwin Piner其他文献

Edwin Piner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

An investigation into novel methods of selective breeding for aquaculture fish based on their metabolic and growth rate
基于代谢和生长速度的水产养殖鱼类选育新方法的研究
  • 批准号:
    23K14013
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cell membrane-targeting proteoglycan chimeras as selective growth factor signaling actuators
作为选择性生长因子信号传导执行器的细胞膜靶向蛋白聚糖嵌合体
  • 批准号:
    10588085
  • 财政年份:
    2023
  • 资助金额:
    $ 41万
  • 项目类别:
Development of cancer selective infectious virus vector that slows tumor growth
开发减缓肿瘤生长的癌症选择性感染病毒载体
  • 批准号:
    22K15558
  • 财政年份:
    2022
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Application of Bottom-Up Selective Growth Technology to Hybrid Bonding
自下而上选择性生长技术在混合键合中的应用
  • 批准号:
    21K20426
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of a thin film growth circulation-cycle-system using selective elemental ion beam
使用选择性元素离子束开发薄膜生长循环系统
  • 批准号:
    21K04885
  • 财政年份:
    2021
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Selective Area Growth of Semiconductor Structures by MOCVD for Telecommunication Applications
用于电信应用的 MOCVD 半导体结构的选择性区域生长
  • 批准号:
    543559-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Engage Grants Program
Selective area growth of cubic group III-Nitrides on nano-patterned 3C-SiC (001) substrates
纳米图案 3C-SiC (001) 衬底上立方 III 族氮化物的选择性区域生长
  • 批准号:
    418748882
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Research Grants
Selective growth inhibition of Streptococcus mutans by antisense peptide nucleic acid
反义肽核酸对变形链球菌的选择性生长抑制
  • 批准号:
    19K24083
  • 财政年份:
    2019
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Selective growth of ultra-long grain in metal thin film for microelectronic application
微电子应用金属薄膜中超长晶粒的选择性生长
  • 批准号:
    18K14139
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Discovering the Facet-Selective Chemistry that Drives Anisotropic Growth of Metal Nanostructures
发现驱动金属纳米结构各向异性生长的面选择性化学
  • 批准号:
    1808108
  • 财政年份:
    2018
  • 资助金额:
    $ 41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了