Integrated Selective Growth of Diamond and GaN for Maximum Heat Extraction from Electronic Devices
金刚石和 GaN 的集成选择性生长可最大限度地从电子设备中提取热量
基本信息
- 批准号:1810419
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diamond, as an electronic material, has the best heat conduction properties and is readily produced by commercial equipment and processes. Gallium nitride is a semiconductor material that has seen recent commercial success in high efficiency light emitting diode bulbs, radio wave communications and radars, and power conversion switches.However, the full potential of gallium nitride is limited by the material's inability to efficiently conduct heat. Therefore, the project's aim is to combine diamond and gallium nitride in a novel approach that will focus on (1) the processes that produce both materials, (2) an in-depth characterization of the electronic and thermal properties (emphasizing heat flow), (3) fabrication of test structures, and (4) thermal conduction simulations. There are broad needs for combining diamond's thermal benefits within individual circuitry that comprises today's electronics.Transistors and switches (the backbone of the entire high-tech industry) are well known to produce substantial heat, and the problem is continually getting worse as devices become smaller and the density of electronic components packed together on circuit boards increases. (In personal electronics, consider how hot smart phones and laptops become during regular usage.) Specific applications that will benefit from the research include electric vehicles, power conversion for flexible integration of renewable energy sources to the nation's power grid, radar systems and communications systems for first-responder, defense and civilian uses. The research will result in basic and applied knowledge regarding the diamond-gallium nitride interface. Results will be published in peer-reviewed journals and presented at national and international conferences. Student engagement and education efforts will take place through research and classroom experiences and a strong culture of undergraduate research at the affiliate's institution.The primary goal of the research is to develop a novel diamond-GaN interface and fully characterize its thermal transport characteristics. Innovative materials research will involve three-dimensional integration of GaN on diamond to significantly improve thermal management in high-power electronics. The high thermal conductivity of diamond makes it highly attractive for mitigating self-heating effects that plague the efficiency of switches and power transistors. An innovative path will be developed to selectively grow diamond and GaN to achieve close proximity to the current-carrying GaN two-dimensional electron gas for efficient heat removal. Systematic studies will focus on material growth and characterization. Characterization will emphasize interfaces of these materials and its impact on heat flow. Fabrication of electrical and electrothermal test structures will be conducted. These will be used in combination with electrical and optical measurements to investigate the effects of deposition and heterointerface quality on fundamental properties, including and thermal boundary resistance (TBR). The impact of these material properties on transistor operational limits will be examined with the aid of simulations. Selective diamond deposition will provide understanding to improve diamond quality, interface properties, and manage stresses resulting from thermal expansion mismatches. The impact of the growth steps, particularly of the diamond-GaN interfaces, on material and device properties will be studied by physical and optical methods. Test structures will be measured to determine thermal conductivity and TBR. Extensive characterization will correlate crystal quality and defect properties with these key macroscopic quantities in thermal transport and electrical performance. The research will result in basic and applied knowledge regarding material deposition and properties of the diamond?GaN interface region. Results will be published in peer-reviewed journals and presented at national and international conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金刚石作为一种电子材料,具有最好的导热性能,很容易通过商业设备和工艺生产出来。氮化镓是一种半导体材料,最近在高效发光二极管灯泡、无线电波通信和雷达以及功率转换开关方面取得了商业成功。然而,氮化镓的全部潜力受到材料无法有效导热的限制。因此,该项目的目标是以一种新颖的方法将金刚石和氮化镓结合起来,该方法将侧重于(1)生产这两种材料的工艺,(2)电子和热性能的深入表征(强调热流),(3)测试结构的制造,以及(4)热传导模拟。在组成当今电子产品的单个电路中结合金刚石的热效益有广泛的需求。众所周知,晶体管和开关(整个高科技产业的支柱)会产生大量的热量,随着设备变得越来越小,电路板上电子元件的密度越来越大,这个问题越来越严重。(在个人电子产品方面,想想智能手机和笔记本电脑在日常使用中会变得多热。)将受益于该研究的具体应用包括电动汽车、可再生能源与国家电网灵活集成的电力转换、雷达系统和第一反应者通信系统、国防和民用。该研究将为金刚石-氮化镓界面的研究提供基础和应用知识。研究结果将发表在同行评议的期刊上,并在国内和国际会议上发表。学生的参与和教育努力将通过研究和课堂体验以及附属机构强大的本科生研究文化来实现。本研究的主要目标是开发一种新的金刚石-氮化镓界面,并充分表征其热输运特性。创新材料研究将涉及氮化镓在金刚石上的三维集成,以显着改善大功率电子器件的热管理。金刚石的高导热性使其在减轻困扰开关和功率晶体管效率的自热效应方面具有很高的吸引力。将开发一种创新的途径来选择性地生长金刚石和氮化镓,以实现与载流氮化镓二维电子气体的密切接近,从而实现高效的散热。系统的研究将集中于材料的生长和表征。表征将强调这些材料的界面及其对热流的影响。将进行电气和电热测试结构的制造。这些将与电学和光学测量结合使用,以研究沉积和异质界面质量对基本性能的影响,包括热边界电阻(TBR)。这些材料特性对晶体管工作极限的影响将在模拟的帮助下进行研究。选择性金刚石沉积将为提高金刚石质量、界面性能和管理热膨胀不匹配引起的应力提供理解。生长步骤,特别是金刚石-氮化镓界面对材料和器件性能的影响将通过物理和光学方法进行研究。测试结构将被测量以确定热导率和TBR。广泛的表征将把晶体质量和缺陷特性与热输运和电性能中的这些关键宏观量联系起来。这项研究将产生关于材料沉积和金刚石性能的基础和应用知识。GaN界面区域。研究结果将发表在同行评议的期刊上,并在国内和国际会议上发表。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of precursor stoichiometry on morphology, phase purity, and texture formation of hot filament CVD diamond films grown on Si (100) substrate
前驱体化学计量对 Si (100) 基底上生长的热丝 CVD 金刚石薄膜的形貌、相纯度和织构形成的影响
- DOI:10.1007/s10854-020-03395-7
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ahmed, Raju;Siddique, Anwar;Saha, Rony;Anderson, Jonathan;Engdahl, Chris;Holtz, Mark;Piner, Edwin
- 通讯作者:Piner, Edwin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Piner其他文献
Edwin Piner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
An investigation into novel methods of selective breeding for aquaculture fish based on their metabolic and growth rate
基于代谢和生长速度的水产养殖鱼类选育新方法的研究
- 批准号:
23K14013 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cell membrane-targeting proteoglycan chimeras as selective growth factor signaling actuators
作为选择性生长因子信号传导执行器的细胞膜靶向蛋白聚糖嵌合体
- 批准号:
10588085 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Development of cancer selective infectious virus vector that slows tumor growth
开发减缓肿瘤生长的癌症选择性感染病毒载体
- 批准号:
22K15558 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a thin film growth circulation-cycle-system using selective elemental ion beam
使用选择性元素离子束开发薄膜生长循环系统
- 批准号:
21K04885 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of Bottom-Up Selective Growth Technology to Hybrid Bonding
自下而上选择性生长技术在混合键合中的应用
- 批准号:
21K20426 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Selective Area Growth of Semiconductor Structures by MOCVD for Telecommunication Applications
用于电信应用的 MOCVD 半导体结构的选择性区域生长
- 批准号:
543559-2019 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
Engage Grants Program
Selective area growth of cubic group III-Nitrides on nano-patterned 3C-SiC (001) substrates
纳米图案 3C-SiC (001) 衬底上立方 III 族氮化物的选择性区域生长
- 批准号:
418748882 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
Research Grants
Selective growth inhibition of Streptococcus mutans by antisense peptide nucleic acid
反义肽核酸对变形链球菌的选择性生长抑制
- 批准号:
19K24083 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Selective growth of ultra-long grain in metal thin film for microelectronic application
微电子应用金属薄膜中超长晶粒的选择性生长
- 批准号:
18K14139 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Discovering the Facet-Selective Chemistry that Drives Anisotropic Growth of Metal Nanostructures
发现驱动金属纳米结构各向异性生长的面选择性化学
- 批准号:
1808108 - 财政年份:2018
- 资助金额:
$ 41万 - 项目类别:
Standard Grant














{{item.name}}会员




