Theory and Methods for Causal Inference in Chronic Diseases

慢性病因果推断的理论与方法

基本信息

  • 批准号:
    1811245
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Chronic diseases such as cardiovascular disease and HIV create an immense health and economic burden, both within the USA and globally. With recent technological advances, the chronic disease research enterprise is rapidly becoming data-intensive and data-driven. Massive and complex data provide unprecedented opportunities for discovering optimal treatment strategies for chronic diseases. However, these complex data also present novel challenges for statistical analysis. Patients may visit the clinic at irregular intervals, may drop out of studies, and may discontinue prescribed treatments prematurely. In addition, there may be "confounding by indication", in that some treatments may have been prescribed preferentially to sicker patients. These features can be barriers to effectively translating rich information into meaningful knowledge. The overarching theme of this project is to develop new data analysis methods that tackle these important and recurring challenges. This work aims to advance statistical science through the development of novel approaches to address these difficult challenges, where existing methods do not apply or suffer from major drawbacks. The research will also provide subject matter scientists with a principled way to approach scientific questions in these settings to discover optimal treatment strategies for patients. This research project has the following goals. 1) Develop estimators of survival distributions as a function of time to treatment discontinuation using a dynamic-regime marginal structural models approach. Treatment discontinuation arises frequently in clinical practice, complicating the analysis and interpretation. The objective here is to develop an instructive demonstration of how careful conceptualization of this problem leads to an unambiguous definition of a sensible treatment effect and to valid inferences, shaping a principled approach to dealing with treatment discontinuation. 2) Develop efficient estimators for Structural Nested Mean Models (SNMMs) from longitudinal observational studies in the presence of informative censoring using semiparametric theory. Time-varying confounding by indication is a widespread phenomenon and causes selection bias in the estimation of treatment effect. SNMMs have been proposed to overcome this issue; however, their use in practice is still unpopular, partly because the efficiency of the estimators is highly dependent on the choice of estimating equations, and the theory is still underdeveloped in many settings. The investigator plans to develop improved estimators of causal parameters in SNMMs in the presence of censoring, which gain both efficiency and robustness to nuisance model specification over existing methods. 3) Develop a new framework of continuous-time SNMMs. In many realistic situations, the outcomes and treatments are more likely to be measured at irregularly spaced time points. Most of the existing SNMMs literature uses a discrete-time setup, which is overly simplified and therefore impractical. The investigator aims to provide a unified framework for SNMMs with continuous-time processes, establishing a novel area of research in causal inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心血管疾病和艾滋病毒等慢性疾病在美国和全球范围内造成了巨大的健康和经济负担。 随着最近的技术进步,慢性病研究企业正在迅速成为数据密集型和数据驱动型。 大量复杂的数据为发现慢性病的最佳治疗策略提供了前所未有的机会。然而,这些复杂的数据也给统计分析带来了新的挑战。 患者可能不定期到诊所就诊,可能退出研究,也可能提前停止处方治疗。此外,可能存在“适应症混淆”,因为某些治疗可能优先用于病情较重的患者。 这些特征可能是有效地将丰富的信息转化为有意义的知识的障碍。该项目的首要主题是开发新的数据分析方法,以应对这些重要和反复出现的挑战。这项工作旨在通过开发新的方法来推进统计科学,以应对现有方法不适用或存在重大缺陷的困难挑战。该研究还将为主题科学家提供一种原则性的方法来解决这些环境中的科学问题,以发现患者的最佳治疗策略。 该研究项目有以下目标。1)使用动态方案边际结构模型方法,开发生存分布的估计值作为治疗中止时间的函数。在临床实践中经常出现治疗中止,使分析和解释复杂化。 这里的目的是开发一个有启发性的示范,如何仔细概念化这个问题导致一个明确的定义,一个合理的治疗效果和有效的推论,形成一个原则性的方法来处理治疗中止。 2)利用半参数理论,在信息删失存在的情况下,从纵向观察研究中为结构嵌套均值模型(SNESTs)开发有效的估计量。适应症的时变混杂是一种普遍现象,并导致治疗效果估计的选择偏倚。 SNARCHES已被提出来克服这个问题,但是,他们在实践中的使用仍然是不受欢迎的,部分原因是估计的效率是高度依赖于估计方程的选择,和理论仍然是欠发达的许多设置。 研究者计划在删失的情况下,开发SNEARTH中因果参数的改进估计量,该估计量在现有方法的基础上获得效率和对滋扰模型规范的鲁棒性。 3)提出了一种新的连续时间SNANTRONIC框架。在许多现实情况下,结果和治疗更有可能在不规则的时间点进行测量。大多数现有的SNARCHIP文献使用离散时间设置,这是过于简化,因此不切实际。该研究员旨在为具有连续时间过程的SNEARLY提供一个统一的框架,建立一个新的因果推理研究领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible Imputation of Missing Data, 2nd ed.: Boca Raton, FL: Chapman & Hall/CRC Press, 2018, xxvii + 415 pp., $91.95(H), ISBN: 978-1-13-858831-8.
缺失数据的灵活插补,第二版:博卡拉顿,佛罗里达州:查普曼
Utilizing stratified generalized propensity score matching to approximate blocked trial designs with multiple treatment levels
利用分层广义倾向评分匹配来近似具有多个治疗水平的封闭试验设计
Integration of data from probability surveys and big found data for finite population inference using mass imputation
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jae Kwang Kim;Y. Hwang;Paul H. Chook;Shu Yang
  • 通讯作者:
    Jae Kwang Kim;Y. Hwang;Paul H. Chook;Shu Yang
Causal inference with confounders missing not at random
  • DOI:
    10.1093/biomet/asz048
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Shu Yang;Linbo Wang;Peng Ding
  • 通讯作者:
    Shu Yang;Linbo Wang;Peng Ding
Integrative R-learner of heterogeneous treatment effects combining experimental and observational studies
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lili Wu;Shu Yang
  • 通讯作者:
    Lili Wu;Shu Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shu Yang其他文献

Eukaryotic community composition and dynamics during solid waste decomposition
固体废物分解过程中的真核群落组成和动态
  • DOI:
    10.1007/s00253-022-11912-3
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Shu Yang;Lei Li;Xuya Peng;Rui Zhang;Liyan Song
  • 通讯作者:
    Liyan Song
The effect of selenite on mercury re-emission in smelting flue gas scrubbing system
亚硒酸盐对冶炼烟气洗涤系统汞再排放的影响
  • DOI:
    10.1016/j.fuel.2015.11.072
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Bing Peng;Zhilou Liu;Liyuan Chai;Hui Liu;Shu Yang;Bentao Yang;Kaisong Xiang;Cao Liu
  • 通讯作者:
    Cao Liu
On analyzing and predicting regional taxicab service rate from trajectory data
基于轨迹数据分析预测区域出租车服务率
UIS Withstanding Capability of GaN E-HEMTs with Schottky and Ohmic p-GaN contact
具有肖特基和欧姆 p-GaN 接触的 GaN E-HEMT 的 UIS 耐受能力
The Change of GFAP or S100B Concentration in Serum Before and After Carotid Artery Stenting
颈动脉支架置入术前后血清中GFAP或S100B浓度的变化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaofan Yuan;Shu Yang;Lei Guo;Duo;Jie Huang;Jianhong Wang;F. Guo
  • 通讯作者:
    F. Guo

Shu Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shu Yang', 18)}}的其他基金

Causal Inference with Irregularly Spaced Observation Times
不规则间隔观察时间的因果推断
  • 批准号:
    2242776
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Design, synthesis, and assembly of composite liquid crystal elastomer fibers
复合液晶弹性体纤维的设计、合成和组装
  • 批准号:
    2104841
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
FMRG: Threading High-Performance, Self-Morphing Building Blocks Across Scales Toward a Sustainable Future
FMRG:跨尺度构建高性能、自我变形的构建模块,迈向可持续的未来
  • 批准号:
    2037097
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Convergence of Scalable and Sustainable Digital Fabrication of Smart Textiles
规划资助:智能纺织品可扩展和可持续数字制造融合工程研究中心
  • 批准号:
    1937031
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Environmentally Responsive, Water Harvesting and Self-Cooling Building Envelopes
EAGER/合作研究:环境响应、集水和自冷却建筑围护结构
  • 批准号:
    1745912
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
INSPIRE Track 2: Discovery and Development of Optimized Photonic Systems for High Volume, Low Surface Area Solar Energy Harvesting: Learning from Giant Clams
INSPIRE 轨道 2:发现和开发用于大容量、低表面积太阳能收集的优化光子系统:向巨蛤学习
  • 批准号:
    1343159
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Programmable pattern transformation of reconfigurable polymer membranes
可重构聚合物膜的可编程图案转换
  • 批准号:
    1410253
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficient Rare Cell Capturing in Microfluidic Devices via Multiscale Surface Design
合作研究:通过多尺度表面设计在微流体装置中高效捕获稀有细胞
  • 批准号:
    1263940
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
GOALI: A Multiscale Approach on Interfacial and Structural Interlocking Between Polymer Grafted Shape Memory Pillars
GOALI:聚合物接枝形状记忆柱之间界面和结构联锁的多尺度方法
  • 批准号:
    1105208
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
EFRI-SEED: Energy Minimization via Multi-Scaler Architectures From Cell Contractility to Sensing Materials to Adaptive Building Skins
EFRI-SEED:通过多尺度架构实现能量最小化,从细胞收缩性到传感材料再到自适应建筑表皮
  • 批准号:
    1038215
  • 财政年份:
    2010
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Studentship
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
  • 批准号:
    10604856
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Multiomics data integration methods to discover putative causal variants, genes and patient heterogeneity for Alzheimers disease
多组学数据整合方法发现阿尔茨海默病的假定因果变异、基因和患者异质性
  • 批准号:
    10587524
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
"Improving Understanding Of Weight Stigma With Causal Inference Methods And General Population Survey Data".
“利用因果推理方法和一般人口调查数据提高对体重耻辱的理解”。
  • 批准号:
    ES/X000486/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Using Causal Machine Learning Methods to Inform Tobacco Regulatory Science
使用因果机器学习方法为烟草监管科学提供信息
  • 批准号:
    10662955
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Statistical Methods for Causal Inference
因果推断的统计方法
  • 批准号:
    MC_UU_00032/2
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Intramural
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
  • 批准号:
    10660281
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
  • 批准号:
    2239375
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Development of High-Precision Geospatial Information Utilization Methods in Urban and Regional Economic Analysis and Their Application to Spatial Causal Inference
城市和区域经济分析中高精度地理空间信息利用方法的发展及其在空间因果推理中的应用
  • 批准号:
    23K17559
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了