Extremes Models and Methods from Transformed Linear Operations

变换线性运算的极值模型和方法

基本信息

  • 批准号:
    1811657
  • 负责人:
  • 金额:
    $ 24.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Quantification and assessment of risk associated with extreme-in-magnitude and rare events are important in many science, engineering, and business applications. Univariate extremes methods are well-developed, but there is a need for easily implementable statistical methods to describe and model extremal dependence in high dimensions, and in the time series and spatial contexts. Linear statistical methods including traditional multivariate analysis, time series, and spatial statistics are ubiquitous in non-extreme statistics. Recently, the PI and coauthor connected the seemingly disparate areas of linear statistical methods and extreme value analyses by utilizing transformed-linear operations. An extension of this approach will be used to develop methods for analyzing high-dimensional extremal dependence, modeling extremal dependence in time, and modeling spatial extremes. Because the proposed work is inspired by existing linear models and methods in the non-extreme setting, the models and methods will be relatively simple and familiar. This project will produce statistical methods for describing and modeling extremal dependence via applying transformed-linear operations. In a recently submitted paper, the PI and coauthor link linear algebra to regular variation, a widely-used and theoretically-justified framework for extremal dependence, via transformed linear operations. The PI and coauthor obtain a sensible vector space for extremes yielding the notion of basis, propose an extremes analog to the covariance matrix, and perform an eigendecomposition of this matrix useful for understanding high-dimensional tail dependence. This project aims to develop a simple linear model for extreme spatial data, analogous to the spatial autoregressive model in non-extreme spatial statistics, and transformed-linear time series models inspired by familiar ARMA models, but appropriate for extreme time series data. This project will also develop inference procedures for both the spatial and time series models. Furthermore, this project will further develop linear methods for understanding extremal dependence in high dimensions and explore the idea of conditional dependence and independence for extremes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多科学、工程和商业应用中,与极端量级和罕见事件相关的风险的量化和评估是重要的。单变量极值方法已经发展得很好,但是需要易于实现的统计方法来描述和建模高维、时间序列和空间背景下的极值依赖。 线性统计方法包括传统的多元分析、时间序列和空间统计,在非极值统计中普遍存在。 最近,PI和合著者通过利用变换线性运算将线性统计方法和极值分析的看似不同的领域联系起来。这种方法的扩展将用于开发用于分析高维极值依赖,建模极值依赖时间和建模空间极值的方法。由于所提出的工作受到非极端环境中现有线性模型和方法的启发,因此模型和方法相对简单且熟悉。这个项目将产生通过应用变换线性运算来描述和建模极值依赖的统计方法。在最近提交的一篇论文中,PI和合著者通过变换的线性运算将线性代数与正则变分联系起来,正则变分是极值依赖的一个广泛使用和理论上合理的框架。PI和合著者获得了一个合理的向量空间的极端产生的基础的概念,提出了一个极端的模拟协方差矩阵,并执行此矩阵的特征分解有助于理解高维尾部依赖。 本项目旨在为极端空间数据开发一个简单的线性模型,类似于非极端空间统计学中的空间自回归模型,以及受熟悉的阿尔马模型启发的变换线性时间序列模型,但适用于极端时间序列数据。本项目还将为空间和时间序列模型开发推理程序。 此外,该项目还将进一步开发用于理解高维极值依赖的线性方法,并探索极值的条件依赖和独立的想法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Principal Component Analysis for Extremes and Application to U.S. Precipitation
极值主成分分析及其在美国降水中的应用
  • DOI:
    10.1175/jcli-d-19-0413.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Jiang, Yujing;Cooley, Daniel;Wehner, Michael F.
  • 通讯作者:
    Wehner, Michael F.
Simultaneous autoregressive models for spatial extremes
  • DOI:
    10.1002/env.2656
  • 发表时间:
    2020-09-16
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Fix, Miranda J.;Cooley, Daniel S.;Thibaud, Emeric
  • 通讯作者:
    Thibaud, Emeric
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Cooley其他文献

A response to the commentary of M. Dąbski about the paper ‛Asynchronous Little Ice Age glacial maximum extent in southeast Iceland’ (Geomorphology (2010), 114, 253–260)
  • DOI:
    10.1016/j.geomorph.2010.12.024
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marie Chenet;Erwan Roussel;Vincent Jomelli;Delphine Grancher;Daniel Cooley
  • 通讯作者:
    Daniel Cooley
Assessment study of lichenometric methods for dating surfaces
地表测年方法评估研究
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Jomelli;Delphine Grancher;P. Naveau;Daniel Cooley;D. Brunstein
  • 通讯作者:
    D. Brunstein
Multiple Indicators of Extreme Changes in Snow-Dominated Streamflow Regimes, Yakima River Basin Region, USA
美国亚基马河流域地区积雪主导的水流状况极端变化的多项指标
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Wagner;K. Bennett;G. Liston;C. Hiemstra;Daniel Cooley
  • 通讯作者:
    Daniel Cooley
Low-power design techniques with process tagging and dynamic power management
具有流程标记和动态电源管理的低功耗设计技术
Modeling the upper tail of the distribution of facial recognition non-match scores
对面部识别不匹配分数分布的上尾部进行建模
  • DOI:
    10.4310/sii.2017.v10.n4.a13
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brett D. Hunter;Daniel Cooley;Cole Givens;P. Kokoszka;Bailey Fosdick;Henry Adams;R. Beveridge
  • 通讯作者:
    R. Beveridge

Daniel Cooley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Cooley', 18)}}的其他基金

A new parametric model, likelihood methods, and other advancements for multivariate extremes
新的参数模型、似然方法和多元极值的其他进步
  • 批准号:
    2311164
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EaSM 2 Advancing extreme value analysis of high impact climate and weather events
合作研究:EaSM 2 推进高影响气候和天气事件的极值分析
  • 批准号:
    1243102
  • 财政年份:
    2013
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Standard Grant
Models for Extremes on a Spatial Lattice
空间格上的极值模型
  • 批准号:
    0905315
  • 财政年份:
    2009
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Standard Grant
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Standard Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Studentship
Construction of models and analysis/design methods for molecular communication systems considering the distance between molecular robots
考虑分子机器人间距离的分子通信系统模型构建及分析/设计方法
  • 批准号:
    22KJ2683
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reconstruction and Application of Learning Methods for Symbolic Regression Models
符号回归模型学习方法的重构及应用
  • 批准号:
    23H03466
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Porcine xenograft cancer models for photoimmunotherapy and proposed treatment methods
用于光免疫疗法的猪异种移植癌症模型和建议的治疗方法
  • 批准号:
    23H02761
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
  • 批准号:
    23H01028
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of stable coastal blue carbon distribution survey methods using satellites, observations, models, and AI
利用卫星、观测、模型和人工智能开发稳定的沿海蓝碳分布调查方法
  • 批准号:
    23H01516
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了