AF: Small: Robust and Secure Learning

AF:小型:稳健且安全的学习

基本信息

  • 批准号:
    1813049
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) systems play an increasingly central role in society--from ubiquitous speech recognition systems, to navigation systems, product recommendation systems, and deployed learning systems across manufacturing, industry, and healthcare. The near future, with complex computer vision systems, self-driving cars, and ML driven medical care and patient monitoring, promises a nearly pervasive presence of ML systems in our society. Despite promising performance in idealized settings, current ML systems are often brittle--they are sensitive to slight changes in the input data, and often have weaknesses that can be easily exploited by a malicious adversary. Resolving these current shortcomings is a necessary step in ensuring the stability, safety, and security of a society that relies heavily on machine learning. The central goal of this project is to develop learning algorithms that are robust, and secure. These go beyond the traditional goal of developing learning algorithms that achieve high accuracy, and address the broad need for reliability and safety in critical deployed systems. As an extension of the research component of the project, the investigator will continue education and outreach efforts. These include disseminating the research publications and code produced by this project, continuing to develop new courses and teaching materials on data-centric algorithms, machine learning, and related topics, and organizing a semi-annual forum for the exchange of ideas between industry and academia. The research core of this project addresses the lack of robustness of current learning and optimization algorithms. This lack of robustness takes the following two distinct forms. First, current algorithms are sensitive to changes in even a very small portion of the data-set on which they are trained. Second, even when trained on legitimate data, the learned models are often susceptible to "adversarial examples" in the sense that for the vast majority of data points--even data points in the training set--a small adversarial perturbation of the data point in question will result in the model outputting a completely different label. The presence of these two types of fragility in current learning systems raises the possibility of vulnerabilities to two new sorts of security threats: 1) the threat that a portion of the training data is either extremely biased and unreliable, or worse--that it has been generated by an adversary whose goal is to mislead the machine learning system, and 2) the threat that deployed machine learning systems can be tricked via minute but carefully generated adversarial modifications in their test points--modifications that are essentially invisible to humans. The project seeks to address these two critical weaknesses of current systems, by : 1) developing new algorithms that are robust to the presence of significant fractions of arbitrary -- including adversarial -- data, which can be applied to a number of fundamental estimation, machine learning, and optimization tasks, and 2) developing a rigorous understanding of why certain training algorithms yield models that are inherently vulnerable to adversarial examples, and develop tools for reducing this vulnerability. Additionally, this project investigates the computational, and information theoretic aspects of robust and secure learning, including developing an understanding of any potential trade-offs, for example between the amount of training data and computation time, and robustness or security of the resulting trained model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)系统在社会中发挥着越来越重要的作用-从无处不在的语音识别系统到导航系统,产品推荐系统以及跨制造业,工业和医疗保健的部署学习系统。 在不久的将来,随着复杂的计算机视觉系统、自动驾驶汽车、机器学习驱动的医疗保健和患者监测,机器学习系统将在我们的社会中几乎无处不在。 尽管在理想化的环境中表现良好,但当前的机器学习系统往往很脆弱--它们对输入数据的微小变化很敏感,而且往往存在很容易被恶意对手利用的弱点。 解决当前的这些缺点是确保严重依赖机器学习的社会的稳定,安全和安全的必要步骤。 该项目的中心目标是开发健壮和安全的学习算法。 这些超越了传统的目标,即开发实现高准确性的学习算法,并解决了关键部署系统对可靠性和安全性的广泛需求。 作为该项目研究部分的延伸,调查员将继续开展教育和外联工作。 这些措施包括传播该项目产生的研究出版物和代码,继续开发以数据为中心的算法,机器学习和相关主题的新课程和教材,并组织半年度论坛,以交流工业界和学术界的想法。 该项目的研究核心是解决当前学习和优化算法缺乏鲁棒性的问题。这种鲁棒性的缺乏表现为以下两种不同的形式。首先,当前的算法对它们所训练的数据集的即使是非常小的部分的变化都很敏感。 其次,即使在合法数据上进行训练,学习的模型通常也容易受到“对抗性示例”的影响,因为对于绝大多数数据点,甚至是训练集中的数据点,对数据点的微小对抗性扰动将导致模型输出完全不同的标签。 当前学习系统中存在这两种类型的脆弱性,增加了两种新的安全威胁的可能性:1)一部分训练数据要么是极端有偏见和不可靠的,要么更糟--它是由目标是误导机器学习系统的对手生成的,2)部署的机器学习系统的威胁可以通过在测试点中进行微小但精心生成的对抗性修改来欺骗-这些修改基本上是人类不可见的。该项目力求通过以下方式解决当前系统的这两个关键弱点:1)开发新的算法,这些算法对任意(包括对抗性)数据的显著部分的存在具有鲁棒性,这些算法可以应用于许多基本估计、机器学习和优化任务,2)严格理解为什么某些训练算法产生的模型天生容易受到对抗性示例的影响,并开发减少这种脆弱性的工具。 此外,该项目还研究了鲁棒和安全学习的计算和信息理论方面,包括了解任何潜在的权衡,例如训练数据量和计算时间之间的权衡,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implicit regularization for deep neural networks driven by an Orstein-Uhlenbeck like process
由 Orstein-Uhlenbeck 类过程驱动的深度神经网络的隐式正则化
Sample Amplification: Increasing Dataset Size even when Learning is Impossible
样本放大:即使无法学习,也可以增加数据集大小
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
  • DOI:
    10.48550/arxiv.2208.01066
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shivam Garg;Dimitris Tsipras;Percy Liang;G. Valiant
  • 通讯作者:
    Shivam Garg;Dimitris Tsipras;Percy Liang;G. Valiant
Making AI Forget You: Data Deletion in Machine Learning
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio A. Ginart;M. Guan;G. Valiant;James Y. Zou
  • 通讯作者:
    Antonio A. Ginart;M. Guan;G. Valiant;James Y. Zou
Misspecification in Prediction Problems and Robustness via Improper Learning
预测问题的错误指定和不正确学习的鲁棒性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marsden, Annie;Duchi, John;Valiant, Gregory
  • 通讯作者:
    Valiant, Gregory
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Valiant其他文献

Testing with Non-identically Distributed Samples
使用不同分布的样本进行测试
  • DOI:
    10.48550/arxiv.2311.11194
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shivam Garg;Chirag Pabbaraju;Kirankumar Shiragur;Gregory Valiant
  • 通讯作者:
    Gregory Valiant
Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances
具有未知异方差方差的近最优均值估计
Matrix Multiplication in Quadratic Time and Energy? Towards a Fine-Grained Energy-Centric Church-Turing Thesis
二次时间和能量的矩阵乘法?
  • DOI:
    10.48550/arxiv.2311.16342
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory Valiant
  • 通讯作者:
    Gregory Valiant

Gregory Valiant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Valiant', 18)}}的其他基金

AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
  • 批准号:
    2341890
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF:Medium:Collaborative Research:Estimation, Learning, and Memory: The Quest for Statistically Optimal Algorithms
AF:中:协作研究:估计、学习和记忆:追求统计最优算法
  • 批准号:
    1704417
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Algorithms for understanding data
职业:理解数据的算法
  • 批准号:
    1351108
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: RI: Small: Barriers in Adversarially Robust Learning
AF:RI:小:对抗性鲁棒学习的障碍
  • 批准号:
    1910681
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Sampling Theory and Robust Machine Learning Algorithms
AF:小:几何采样理论和鲁棒机器学习算法
  • 批准号:
    1909235
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: A Robust Framework for Overcoming the Tangled Mesh Problem
AF:小型:协作研究:克服网格缠结问题的稳健框架
  • 批准号:
    1715970
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: A Robust Framework for Overcoming the Tangled Mesh Problem
AF:小型:协作研究:克服网格缠结问题的稳健框架
  • 批准号:
    1717894
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: AF: Small: Collaborative Research:RESAR: Robust, Efficient, Scalable, Autonomous Reliable Storage for the Cloud
SHF:AF:小型:协作研究:RESAR:稳健、高效、可扩展、自主可靠的云存储
  • 批准号:
    1217648
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Accurate, Biochemically-Relevant, and Robust Scoring Functions for Protein-Ligand Binding Affinity Prediction
AF:小:用于蛋白质-配体结合亲和力预测的准确、生化相关且稳健的评分功能
  • 批准号:
    1117900
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了