CIF: Small: Adversarial Network Tomography: Inferring Network State from Manipulated End-to-End Measurements

CIF:小型:对抗性网络断层扫描:从操纵的端到端测量推断网络状态

基本信息

  • 批准号:
    1813219
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

An accurate and timely view of a network's internal state (e.g., distributions of link delays/jitters/losses or various statistics of these distributions) is at the heart of many network management functions, such as traffic engineering, service placement, and fault detection/localization. Obtaining such a view has, however, become more challenging than ever in modern computer communication networks such as the Internet, hybrid optical/copper networks, future cellular networks, and distributed cloud networks, due to their increased complexity and heterogeneity. The traditional network monitoring approach that is based on pervasively deployed monitoring agents (e.g., SNMP) or pervasively supported network protocols (e.g., traceroute) faces severe limitations in such complex and heterogeneous environments. Network tomography, which aims at inferring the network internal state from end-to-end measurements taken from the peripheral of the network, provides a powerful alternative approach that can construct a view of the internal state without directly monitoring the internal links/nodes. Existing network tomography solutions, however, assume that all the internal nodes behave consistently in traffic forwarding, which makes them vulnerable in an adversarial setting, where certain nodes can manipulate the traffic traversing them to alter the end-to-end measurements. This project will investigate the vulnerability of existing network tomography solutions in an adversarial setting and develop guidelines for defense mechanisms. The primary objective of the project is to quantify the vulnerability of existing network tomography algorithms through rigorous vulnerability analysis, which involves actually developing the optimal attack strategy for each representative tomography algorithm and analyzing its impact in terms of the maximum performance degradation that an adversary can cause without being detected/localized. Concrete optimization problems will be formulated and solved for network tomography algorithms designed for different types of network states, including additive metrics that represent link delay/loss statistics, min metrics that represent available link capacities, and Boolean metrics that represent link congestion/failure states. Based on the vulnerability analysis, insights will be drawn on the reliability of tomography-based network monitoring in adversarial environments, and guidelines will be developed for future network tomography algorithms. The proposed research is grounded on latest advances on network tomography in the benign setting, including state estimation algorithms, measurement design algorithms, and theory about their limitations and performance. The research will be performed at the intersection of optimization and algorithm design, involving linear/non-linear optimization, combinatorial optimization, parameter estimation, and empirical validations. The project will provide training experience for students, some from underrepresented groups, through participation in the theoretical study, implementation of algorithms, and conduct of empirical validations based on real datasets from the Internet.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
准确及时地查看网络的内部状态(例如,链路延迟/抖动/损耗的分布或这些分布的各种统计数据)是许多网络管理功能(例如流量工程、服务布置和故障检测/定位)的核心。然而,在现代计算机通信网络(诸如互联网、混合光/铜网络、未来蜂窝网络和分布式云网络)中,由于其增加的复杂性和异构性,获得这样的视图变得比以往更具挑战性。传统的网络监控方法是基于普遍部署的监控代理(例如,SNMP)或普遍支持的网络协议(例如,跟踪路由)在这种复杂和异构的环境中面临严重的限制。网络断层扫描,其目的是推断网络的内部状态从端到端的测量从网络的外围设备,提供了一个强大的替代方法,可以构建一个内部状态的视图,而不直接监视内部链路/节点。然而,现有的网络断层扫描解决方案假设所有内部节点在流量转发中的行为一致,这使得它们在对抗性设置中容易受到攻击,其中某些节点可以操纵穿过它们的流量以改变端到端测量。该项目将调查现有网络断层扫描解决方案在对抗环境中的脆弱性,并制定防御机制的指导方针。该项目的主要目标是通过严格的脆弱性分析,量化现有网络断层扫描算法的脆弱性,其中包括实际开发每个代表性的断层扫描算法的最佳攻击策略,并分析其在最大性能下降方面的影响,对手可以导致不被检测/本地化。具体的优化问题将制定和解决网络断层扫描算法设计的不同类型的网络状态,包括添加剂的指标,代表链路延迟/丢失统计,最小的指标,代表可用的链路容量,和布尔指标,代表链路拥塞/故障状态。在脆弱性分析的基础上,将对基于断层扫描的网络监控在对抗环境中的可靠性提出见解,并为未来的网络断层扫描算法制定指导方针。所提出的研究是基于网络断层扫描在良性环境中的最新进展,包括状态估计算法,测量设计算法,以及它们的局限性和性能的理论。该研究将在优化和算法设计的交叉点进行,涉及线性/非线性优化,组合优化,参数估计和经验验证。该项目将通过参与理论研究、算法实施以及基于互联网上的真实的数据集进行实证验证,为学生(其中一些来自代表性不足的群体)提供培训经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stealthy DGoS Attack against Network Tomography: The Role of Active Measurements
针对网络断层扫描的隐形 DGoS 攻击:主动测量的作用
Stealthy DGoS Attack under Passive and Active Measurements
被动和主动测量下的隐形 DGoS 攻击
Stealthy DGoS Attack: DeGrading of Service Under the Watch of Network Tomography
  • DOI:
    10.1109/tnet.2021.3058230
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cho-Chun Chiu;T. He
  • 通讯作者:
    Cho-Chun Chiu;T. He
Queuing Network Topology Inference Using Passive Measurements
使用被动测量进行排队网络拓扑推断
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin, Yilei;He, Ting;Pang, Guodong
  • 通讯作者:
    Pang, Guodong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ting He其他文献

ZrO2 Mesoporous Nanoframes for Biomass Upgrading
用于生物质升级的 ZrO2 介孔纳米框架
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiqing Wang;Hao Chen;Bing Ni;Kai Wang;Ting He;Yulong Wu;Xun Wang
  • 通讯作者:
    Xun Wang
In situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy combined with non-negative matrix factorization for investigating the synthesis reaction mechanism of 3-amino-4- amino-oxime furazan
原位衰减全反射-傅里叶变换红外(ATR-FTIR)光谱结合非负矩阵分解研究3-氨基-4-氨基肟呋咱的合成反应机理
  • DOI:
    10.1039/c8ay01924j
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Tianlong Zhang;Ting He;Chunhua Yan;Xinyu Gao;Junxiu Ma;Hua Li
  • 通讯作者:
    Hua Li
Quantitative analysis of coal quality by mutual information-particle swarm optimization (MI-PSO) hybrid variable selection method coupled with spectral fusion strategy of laser-induced breakdown spectroscopy (LIBS) and fourier transform infrared spectr
互信息-粒子群优化(MI-PSO)混合变量选择方法结合激光诱导击穿光谱(LIBS)和傅里叶变换红外光谱的光谱融合策略对煤炭质量进行定量分析
Ultrathin Two-Dimensional Zirconium Metal-Organic Framework Nanosheets: Preparation and Application in Photocatalysis
超薄二维锆金属有机骨架纳米片的制备及其在光催化中的应用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Ting He;Bing Ni;Simin Zhang;Yue Gong;Haiqing Wang;Lin Gu;Jing Zhuang;Wenping Hu;Xun Wang
  • 通讯作者:
    Xun Wang
Clinical Interventions in Aging Dovepress Uncontrolled Hypertension and Orthostatic Hypotension in Relation to Standing Balance in Elderly Hypertensive Patients
与老年高血压患者站立平衡相关的老年 Dovepress 失控高血压和体位性低血压的临床干预
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Shen;Ting He;J. Chu;Jingjing He;Xujiao Chen
  • 通讯作者:
    Xujiao Chen

Ting He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ting He', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Inference and Control in Overlay Networks
合作研究: CNS 核心:媒介:覆盖网络中的推理与控制
  • 批准号:
    2106294
  • 财政年份:
    2021
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Adversarial Network Reconnaissance in Software Defined Networking
SaTC:核心:小型:软件定义网络中的对抗性网络侦察
  • 批准号:
    1946022
  • 财政年份:
    2020
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236484
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
  • 批准号:
    2227153
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Generalizing Adversarial Examples in Natural Language
SaTC:核心:小:概括自然语言中的对抗性示例
  • 批准号:
    2124538
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
  • 批准号:
    2227185
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy protection of Vehicles location in Spatial Crowdsourcing under realistic adversarial models
合作研究:SaTC:核心:小:现实对抗模型下空间众包中车辆位置的隐私保护
  • 批准号:
    2136948
  • 财政年份:
    2021
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing IoT and Edge Devices under Audio Adversarial Attacks
协作研究:SaTC:核心:小型:在音频对抗攻击下保护物联网和边缘设备
  • 批准号:
    2114161
  • 财政年份:
    2021
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了