CHS: Small: Multimodal Conversational Assistant that Learns from Demonstrations
CHS:Small:从演示中学习的多模式对话助手
基本信息
- 批准号:1814472
- 负责人:
- 金额:$ 49.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intelligent assistants such as Apple's Siri, Amazon's Alexa and Microsoft's Cortana are rapidly gaining popularity by providing a conversational natural language interface for users to access various online services and digital content. They allow computing tasks to be performed in contexts where users cannot touch their phones (such as while driving), and on wearable and Internet of Things (IoT) devices (such as Google Home). However, such conversational interfaces are limited in their ability to handle the "long-tail" of tasks and suffer from lack of customizability. This research will explore a new multi-modal, interactive, programming-by-demonstration (PBD) approach that enables end users to add new capabilities to an intelligent assistant by programming automation scripts for tasks in any existing third-party Android mobile app using a combination of demonstrations and verbal instructions. The system will leverage state-of-the-art machine learning and natural language processing techniques to comprehend the user's verbal instructions that supply information missing in the demonstration, such as implicit conditions, user intent and personal preferences. The user's demonstration on the graphical user interface will be used for grounding the conversation and reinforcing the natural language understanding model. The system will point the way to allowing the general public to more effectively use their smartphones, IoT devices and intelligent assistants, increasing the adoption, efficiency and correctness of uses of these technologies. The integration of intelligent assistants with PBD will have broad impact by exposing people to programming concepts in an easy-to-learn way, and thereby increasing computational thinking. This project will result in several innovations beyond the current state of the art through advances in programming by demonstration (PBD) and intelligent assistants, and especially in their integration. The work will explore leveraging verbal instructions as an additional modality to address long-standing challenges in PBD research including generalizing the data descriptions and adding control structures. How to coordinate the two modalities to help the intelligent assistant learn new tasks effectively and efficiently from users will be investigated, and how users utilize the two modalities in multi-modal PBD systems for programming tasks in different situations will also be studied. New ways to leverage the displayed graphical user interfaces (GUI) of apps to enhance the speech recognition and language understanding by using the strings and other context of the GUI on the smartphone will be developed. The ability of the conversational assistant to participate in this generalization process will be enhanced, with a focus on having the system ask appropriate and helpful questions so the task automation will fit the user's needs and intentions. New approaches to representing scripts created by PBD systems that users can read, understand and edit will be explored, as will increasing trust and usefulness of the scripts and supporting error handling, debugging and maintenance. The new technology will also be able to extract data from and enter data into apps, and to learn, through demonstration and verbal instruction, how to transform the data into appropriate formats. Finally, how to support sharing of scripts created by PBD systems while ensuring the appropriate levels of privacy and security will also be investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
苹果的Siri、亚马逊的Alexa和微软的Cortana等智能助手通过为用户提供对话式自然语言界面来访问各种在线服务和数字内容,正在迅速普及。 它们允许在用户无法触摸手机的情况下(例如在驾驶时)以及在可穿戴和物联网(IoT)设备(例如Google Home)上执行计算任务。 然而,这样的会话接口在它们处理任务的“长尾”的能力方面是有限的,并且遭受缺乏可定制性的问题。 这项研究将探索一种新的多模态、交互式、演示编程(PBD)方法,使最终用户能够通过使用演示和口头指令的组合,为任何现有的第三方Android移动的应用程序中的任务编程自动化脚本,为智能助手添加新功能。 该系统将利用最先进的机器学习和自然语言处理技术来理解用户的口头指令,这些指令提供了演示中缺少的信息,例如隐式条件,用户意图和个人偏好。 用户在图形用户界面上的演示将用于为对话奠定基础并加强自然语言理解模型。 该系统将为公众更有效地使用智能手机、物联网设备和智能助手指明方向,提高这些技术的采用率、效率和正确性。 智能助手与PBD的集成将通过以易于学习的方式向人们展示编程概念,从而增加计算思维,从而产生广泛的影响。 该项目将通过演示编程(PBD)和智能助手的进步,特别是在它们的集成方面,带来超越当前技术水平的几项创新。 这项工作将探索利用口头指示作为一种额外的方式来解决PBD研究中长期存在的挑战,包括概括数据描述和添加控制结构。 如何协调这两种模式,以帮助智能助理学习新的任务有效和高效地从用户将进行调查,以及用户如何利用这两种模式在多模态PBD系统在不同的情况下编程任务也将进行研究。 将开发利用应用程序显示的图形用户界面(GUI)的新方法,通过使用智能手机上GUI的字符串和其他上下文来增强语音识别和语言理解。 会话助理参与这一概括过程的能力将得到增强,重点是让系统提出适当和有用的问题,以便任务自动化符合用户的需求和意图。 将探索表示PBD系统创建的用户可以阅读、理解和编辑的脚本的新方法,以及增加脚本的信任和有用性并支持错误处理、调试和维护。 新技术还将能够从应用程序中提取数据并将数据输入应用程序,并通过演示和口头指导学习如何将数据转换为适当的格式。 最后,如何支持共享的脚本创建的PBD系统,同时确保适当的隐私和安全水平也将被调查。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components
- DOI:10.1145/3411764.3445049
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Toby Jia-Jun Li;Lindsay Popowski;Tom Michael Mitchell;B. Myers
- 通讯作者:Toby Jia-Jun Li;Lindsay Popowski;Tom Michael Mitchell;B. Myers
Interactive Task and Concept Learning from Natural Language Instructions and GUI Demonstrations
通过自然语言指令和 GUI 演示进行交互式任务和概念学习
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Li, Toby Jia-Jun;Radensky, Marissa;Jia, Justin;Singarajah, Kirielle;Mitchell, Tom M.;Myers, Brad A.
- 通讯作者:Myers, Brad A.
A Multi-modal Approach to Concept Learning in Task Oriented Conversational Agents
面向任务的会话代理中概念学习的多模态方法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Li, Toby Jia-Jun;Radensky, Marissa;Mitchell, Tom;Myers, Brad
- 通讯作者:Myers, Brad
APPINITE: A Multi-Modal Interface for Specifying Data Descriptions in Programming by Demonstration Using Natural Language Instructions
APPINITE:使用自然语言指令通过演示指定编程中的数据描述的多模式接口
- DOI:10.1109/vlhcc.2018.8506506
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Li, Toby Jia-Jun;Labutov, Igor;Li, Xiaohan Nancy;Zhang, Xiaoyi;Shi, Wenze;Ding, Wanling;Mitchell, Tom M.;Myers, Brad A.
- 通讯作者:Myers, Brad A.
End user programing of intelligent agents using demonstrations and natural language instructions
使用演示和自然语言指令对智能代理进行最终用户编程
- DOI:10.1145/3308557.3308724
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Li, Toby Jia-Jun
- 通讯作者:Li, Toby Jia-Jun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brad Myers其他文献
Using traits of web macro scripts to predict reuse
- DOI:
10.1016/j.jvlc.2010.08.003 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:
- 作者:
Chris Scaffidi;Chris Bogart;Margaret Burnett;Allen Cypher;Brad Myers;Mary Shaw - 通讯作者:
Mary Shaw
Brad Myers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brad Myers', 18)}}的其他基金
SHF: Small: Personalizing API Documentation
SHF:小型:个性化 API 文档
- 批准号:
2007482 - 财政年份:2020
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
III: Large: Collaborative Research: Analysis Engineering for Robust End-to-End Data Science
III:大型:协作研究:稳健的端到端数据科学的分析工程
- 批准号:
1856641 - 财政年份:2019
- 资助金额:
$ 49.9万 - 项目类别:
Continuing Grant
TWC: Small: Empirical Evaluation of the Usability and Security Implications of Application Programming Interface Design
TWC:小:应用程序编程接口设计的可用性和安全性影响的实证评估
- 批准号:
1423054 - 财政年份:2014
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
HCC: Large: Collaborative Research: Variations to Support Exploratory Programming
HCC:大型:协作研究:支持探索性编程的变体
- 批准号:
1314356 - 财政年份:2013
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
HCC: Small: Better Tools for Authoring Interactive Behaviors
HCC:小:用于创作交互行为的更好工具
- 批准号:
1116724 - 财政年份:2011
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
Pilot: Exploratory Programming for Interactive Behaviors: Unleashing Interaction Designers' Creativity
试点:交互行为的探索性编程:释放交互设计师的创造力
- 批准号:
0757511 - 财政年份:2008
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
CPA-SEL: Better Tools for Software Understanding
CPA-SEL:更好的软件理解工具
- 批准号:
0811610 - 财政年份:2008
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
Automatically Generating Consistent User Interfaces for Multiple Appliances
自动为多个设备生成一致的用户界面
- 批准号:
0534349 - 财政年份:2005
- 资助金额:
$ 49.9万 - 项目类别:
Continuing Grant
Lowering the Barriers to Successful Programming
降低成功编程的障碍
- 批准号:
0329090 - 财政年份:2003
- 资助金额:
$ 49.9万 - 项目类别:
Continuing Grant
Using Handhelds to Help People with Motor Impairments
使用手持设备帮助运动障碍患者
- 批准号:
0308065 - 财政年份:2003
- 资助金额:
$ 49.9万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
- 批准号:
2401748 - 财政年份:2023
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
Quantitative, multimodal, imaging-based assessment of hypoxia in Non-Small Cell Lung Cancer
非小细胞肺癌缺氧的定量、多模式、基于成像的评估
- 批准号:
2721975 - 财政年份:2022
- 资助金额:
$ 49.9万 - 项目类别:
Studentship
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
- 批准号:
2114644 - 财政年份:2021
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
Behavior Modeling in School of Fishes Based on Multimodal and Small Data
基于多模态、小数据的鱼群行为建模
- 批准号:
20K19792 - 财政年份:2020
- 资助金额:
$ 49.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
III: Small: Multimodal Machine Learning for Data with Incomplete Modalities
III:小:针对模态不完整的数据的多模态机器学习
- 批准号:
2008208 - 财政年份:2020
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
Development of Data-driven Prediction Model using 3D Multimodal Deep Neural Networks for Estimating the Evolution of White Matter Hyperintensities Associated with Small Vessel Disease in Brain MRI
使用 3D 多模态深度神经网络开发数据驱动的预测模型,用于估计与脑 MRI 中小血管疾病相关的白质高信号的演变
- 批准号:
20K23356 - 财政年份:2020
- 资助金额:
$ 49.9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CHS: Small: Reading, Doing, and Sharing Mathematical Expressions for the Blind: A Multimodal Approach
CHS:小:盲人阅读、做和分享数学表达式:多模式方法
- 批准号:
1910622 - 财政年份:2019
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
RI: Small: Lifelong Multimodal Concept Learning
RI:小型:终身多模式概念学习
- 批准号:
1909696 - 财政年份:2019
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
III: Small: Towards Speech-Driven Multimodal Querying
III:小型:迈向语音驱动的多模式查询
- 批准号:
1816701 - 财政年份:2018
- 资助金额:
$ 49.9万 - 项目类别:
Standard Grant
A multimodal approach to develop molecular markers to predict response to immune targeted agents in non-small cell lung cancer
开发分子标记来预测非小细胞肺癌免疫靶向药物反应的多模式方法
- 批准号:
10228710 - 财政年份:2018
- 资助金额:
$ 49.9万 - 项目类别: