SHF: Small: Collaborative: Managing Software Evolution through Continuous Measuring and Monitoring
SHF:小型:协作:通过持续测量和监控管理软件演化
基本信息
- 批准号:1817267
- 负责人:
- 金额:$ 20.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Architecture degradation can have fundamental impacts on software quality and productivity, resulting in substantial loss of time and money. It has been estimated that failed and troubled software costs around 60 billion to 70 billion dollars per year in the United States alone, and recent research has revealed that only 2%-6% of large projects are successful. None of these problems happen overnight. Software evolves continuously, through numerous maintenance tasks, such as fixing bugs and adding new features. Developers typically are focused on their immediate tasks while the cumulative impacts of their activities, as they affect the architecture, go unnoticed. Early symptoms continuously evolve and grow in scope and significance until the system becomes difficult to maintain. Numerous software metrics and measures have been proposed to monitor software maintainability, but they have not yet achieved the reliability needed for comparing and contrasting projects, or to signal early symptoms of severe problems. Current techniques, which are largely based on (static) syntactic dependencies, tend to report large numbers of false positives. This makes it hard to pinpoint the true problems. The project will develop a novel metric suite for source code assessment based on options theory, accompanied by a suite of evolution history measures using maintenance tasks as first-class entities. The project will also develop a hotspot detection method to capture early symptoms of architecture flaws before the software becomes unmanageably buggy and costly to repair. This project has the potential to revolutionize how software systems are monitored and managed, potentially resulting in substantial savings for development organizations, and resulting in a more disciplined, controlled process of software evolution and maintenance. The proposed metrics and tools will be integrated with widely-used software management tools, such as Bitbucket and Github, potentially impacting hundreds of thousands of software projects. The industrial benchmark will establish a Software Heath Chart against which any software project can make a comparison. The methods produced from this research can be used in software design and maintenance education, providing pedagogical tools with scientific foundations. The empirical basis for this research will provide an industry-wide foundation for reasoning about software evolution and management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
架构退化会对软件质量和生产力产生根本性的影响,导致大量的时间和金钱损失。据估计,仅在美国,失败和有问题的软件每年的成本约为600亿至700亿美元,最近的研究表明,只有2%-6%的大型项目是成功的。这些问题都不是一夜之间发生的。通过大量的维护任务,例如修复错误和添加新功能,软件不断发展。开发人员通常专注于他们的直接任务,而他们的活动的累积影响,因为它们影响了体系结构,被忽视了。早期症状在范围和重要性上不断发展和增长,直到系统变得难以维持。已经提出了许多软件度量和度量来监视软件的可维护性,但是它们还没有达到比较和对比项目所需的可靠性,或者表明严重问题的早期症状。当前的技术很大程度上基于(静态)语法依赖,往往会报告大量的误报。这使得很难找出真正的问题。该项目将基于期权理论为源代码评估开发一套新的度量标准,并附带一套使用维护任务作为一级实体的进化历史度量标准。该项目还将开发一种热点检测方法,在软件出现难以管理的漏洞和修复成本高昂之前,捕捉架构缺陷的早期症状。这个项目有可能彻底改变软件系统的监控和管理方式,潜在地为开发组织节省大量资金,并产生一个更有纪律的、受控制的软件演进和维护过程。拟议的指标和工具将与广泛使用的软件管理工具(如Bitbucket和Github)集成,可能影响数十万个软件项目。工业基准将建立一个软件健康图,任何软件项目都可以与之进行比较。本研究所产生的方法可用于软件设计和维护教育,为教学工具提供科学的基础。本研究的实证基础将为软件演进和管理的推理提供一个全行业的基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting the Locations and Predicting the Maintenance Costs of Compound Architectural Debts
- DOI:10.1109/tse.2021.3102221
- 发表时间:2021-08
- 期刊:
- 影响因子:7.4
- 作者:Lu Xiao;Yuanfang Cai;R. Kazman;Ran Mo;Qiong Feng
- 通讯作者:Lu Xiao;Yuanfang Cai;R. Kazman;Ran Mo;Qiong Feng
A Longitudinal Study of Identifying and Paying Down Architecture Debt
- DOI:10.1109/icse-seip.2019.00026
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Maleknaz Nayebi;Yuanfang Cai;R. Kazman;G. Ruhe;Qiong Feng;Chris Carlson;Francis Chew
- 通讯作者:Maleknaz Nayebi;Yuanfang Cai;R. Kazman;G. Ruhe;Qiong Feng;Chris Carlson;Francis Chew
CIDER: concept-based interactive design recovery
CIDER:基于概念的交互设计恢复
- DOI:10.1145/3510454.3516861
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fang, Hongzhou;Cai, Yuanfang;Kazman, Rick;Lefever, Jason
- 通讯作者:Lefever, Jason
On the Lack of Consensus Among Technical Debt Detection Tools
论技术债务检测工具缺乏共识
- DOI:10.1109/icse-seip52600.2021.00021
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lefever, Jason;Cai, Yuanfang;Cervantes, Humberto;Kazman, Rick;Fang, Hongzhou
- 通讯作者:Fang, Hongzhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rick Kazman其他文献
Results of SEI Independent Research and Development Projects and Report on Emerging Technologies and Technology Trends
SEI自主研发项目成果及新兴技术和技术趋势报告
- DOI:
10.21236/ada453372 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
John Bergey;Sven Dietrich;Donald Firesmith;Eileen Forrester;A. Jordan;Rick Kazman;Grace A. Lewis;H. Lipson;N. Mead;Ed Morris - 通讯作者:
Ed Morris
自然な知覚を支えるヒト脳内情報表現の定量モデル化と解読
支持自然感知的人脑信息表示的定量建模和破译
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaiful Chowdhury;Abram Hindle;Rick Kazman;Takumi Shuto;Ken Matsui;and Yasutaka Kamei;西本伸志 - 通讯作者:
西本伸志
Multivocal study on microservice dependencies
关于微服务依赖关系的多声研究
- DOI:
10.1016/j.jss.2025.112334 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.100
- 作者:
Amr S. Abdelfattah;Tomas Cerny;Md Showkat Hossain Chy;Md Arfan Uddin;Samantha Perry;Cameron Brown;Lauren Goodrich;Miguel Hurtado;Muhid Hassan;Yuanfang Cai;Rick Kazman - 通讯作者:
Rick Kazman
Architecting Internet of Things Systems with Blockchain
使用区块链构建物联网系统
- DOI:
10.1145/3442412 - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Wendy Yánez;Rami Bahsoon;Rick Kazman;Yuqun Zhang - 通讯作者:
Yuqun Zhang
Exploring initial challenges for green software engineering
探索绿色软件工程的初始挑战
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Patricia Lago;Rick Kazman;Niklaus Meyer;Maurizio Morisio;Hausi A. Müller;Frances Paulisch;Giuseppe Scanniello;Birgit Penzenstadler;Olaf Zimmermann - 通讯作者:
Olaf Zimmermann
Rick Kazman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rick Kazman', 18)}}的其他基金
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232721 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
CRI: CI-NEW: Collaborative Research: Constructing a Community-Wide Software Architecture Infrastructure
CRI:CI-NEW:协作研究:构建社区范围的软件架构基础设施
- 批准号:
1823214 - 财政年份:2018
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Finding and Fixing Architectural Hotspots: An Economics-Based Decision Support Approach
SHF:媒介:协作研究:寻找和修复架构热点:基于经济学的决策支持方法
- 批准号:
1514561 - 财政年份:2015
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: Teaching Software Modularity through Architectural Review
协作研究:通过架构审查教授软件模块化
- 批准号:
1140300 - 财政年份:2012
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: An Economics-Based Framework for Assessing Software Modularization Decisions
SHF:媒介:协作研究:基于经济学的软件模块化决策评估框架
- 批准号:
1065242 - 财政年份:2011
- 资助金额:
$ 20.12万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232720 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234921 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
- 批准号:
2326494 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326894 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234920 - 财政年份:2023
- 资助金额:
$ 20.12万 - 项目类别:
Standard Grant