Collaborative Research: Mining Seismic Wavefields
合作研究:挖掘地震波场
基本信息
- 批准号:1818611
- 负责人:
- 金额:$ 6.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will fund continued development of methods to process huge volumes of seismic waveform data. This will lead to a great increase in the number of located and characterized seismic events of various kinds and will potentially identify patterns in earthquake occurrence that could inform hazard and near-term rupture forecasting. The initial "Mining Seismic Wavefields" NSF Geoinformatics grant has led to significant progress dealing with data volumes that would have been impossible to process when the project began. This award will fund an additional year of that effort and will maintain this momentum in technique development to complete the analysis of proof-of-concept projects on vast waveform data sets, and to deploy the cyberinfrastructure for wider use by the seismological community.The premise of the research is that continuous and/or densely recorded data coupled with high performance computing and scalable algorithms can enable a network-based approach to earthquake detection that greatly improves the detection of weak and unusual events that would be difficult or impossible to detect using traditional approaches. Numerous seismological observations confirm that proximal earthquake sources generate similar signals. Exploiting the discriminative power of this similarity has led to many fundamental discoveries; however, most similarity-based detection methods require prior knowledge of the source waveform, or template. Blind/uninformed search for signals having unknown signatures based on pair-wise or multiple matches has seen some success, but naïve implementations of this approach suffer from quadratic scaling of computation with time such that problems of interest are inaccessible even for the most capable computers. Similarly, for dense networks, the availability of continuous waveform data motivates alternative detection schemes based on waveform similarity at adjacent stations. This project will further develop efficient data-mining techniques to enable scalable similarity search of seismic wavefields. Technical challenges to be addressed as part of the research for spatially sparse recording are to develop improved similarity-preserving compression for repeating signals detected over a network, and to improve post-processing of search output that will both isolate signals of seismological interest and minimize false detections. For spatially dense recording, this would extend recently developed wavefield matching techniques to similarity across adjacent stations, which would enable similarity search across unaliased elastic wavefields in four dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助继续开发处理大量地震波形数据的方法。这将导致各种已定位和已定性的地震事件的数量大大增加,并有可能查明地震发生的模式,从而为灾害和近期破裂预测提供信息。最初的“挖掘地震波场”NSF地理信息学赠款导致了重大进展,处理了项目开始时不可能处理的数据量。该奖项将为这一努力提供额外一年的资金,并将保持技术开发的势头,以完成对大量波形数据集的概念验证项目的分析,并部署网络基础设施,以供地震学界更广泛地使用。研究的前提是,连续和/或密集记录的数据,加上高性能计算和可扩展的算法,可以使网络-这是一种基于的地震检测方法,极大地改善了对微弱和异常事件的检测,这些事件使用传统方法很难或不可能检测到。大量的地震学观测证实,近距离震源产生类似的信号。利用这种相似性的辨别能力已经导致了许多基本的发现;然而,大多数基于相似性的检测方法需要源波形或模板的先验知识。基于成对或多个匹配的对具有未知签名的信号的盲/不知情搜索已经取得了一些成功,但是这种方法的幼稚实现遭受计算随时间的二次缩放,使得即使对于最有能力的计算机也无法访问感兴趣的问题。类似地,对于密集网络,连续波形数据的可用性激发了基于相邻站处的波形相似性的替代检测方案。该项目将进一步开发有效的数据挖掘技术,以便能够对地震波场进行可扩展的相似性搜索。作为空间稀疏记录研究的一部分,需要解决的技术挑战是为网络上检测到的重复信号开发改进的相似性保持压缩,并改进搜索输出的后处理,以隔离地震学感兴趣的信号并最大限度地减少错误检测。对于空间密集的记录,这将扩展最近开发的波场匹配技术的相似性,在相邻的车站,这将使相似性搜索在四个dimensions.This奖项反映了美国国家科学基金会的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multi-Channel Approach for Automatic Microseismic Event Association using RANSAC-based Arrival Time Event Clustering (RATEC)
- DOI:10.1016/j.eqrea.2021.100008
- 发表时间:2017-02
- 期刊:
- 影响因子:0
- 作者:Lijun Zhu;L. Chuang;J. McClellan;E. Liu;Zhigang Peng
- 通讯作者:Lijun Zhu;L. Chuang;J. McClellan;E. Liu;Zhigang Peng
Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake
- DOI:10.1093/gji/ggy016
- 发表时间:2018-05
- 期刊:
- 影响因子:2.8
- 作者:Chenyu Li;Zhigang Peng;D. Yao;Hao Guo;Z. Zhan;Haijiang Zhang
- 通讯作者:Chenyu Li;Zhigang Peng;D. Yao;Hao Guo;Z. Zhan;Haijiang Zhang
Long‐Period Long‐Duration Events Detected by the IRIS Community Wavefield Demonstration Experiment in Oklahoma: Tremor or Train Signals?
俄克拉荷马州 IRIS 社区波场演示实验检测到的长周期长持续时间事件:震颤还是火车信号?
- DOI:10.1785/02201080081
- 发表时间:2018
- 期刊:
- 影响因子:3.3
- 作者:Li, Chenyu;Li, Zefeng;Peng, Zhigang;Zhang, Chengyuan;Nakata, Nori;Sickbert, Tim
- 通讯作者:Sickbert, Tim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhigang Peng其他文献
Possible triggering relationship of Six Mw>6 earthquakes in 2018-2019 at Philippine archipelago
2018-2019年菲律宾群岛6次Mw>6地震的可能触发关系
- DOI:
10.1007/s13131-021-1813-3 - 发表时间:
- 期刊:
- 影响因子:1.4
- 作者:
Qiu Zhong;Yangfan Deng;Zhigang Peng;Lingyuan Meng - 通讯作者:
Lingyuan Meng
GTUNE: An Assembled Global Seismic Dataset of Underground Nuclear Test Blasts
GTUNE:地下核试验爆炸的全球地震数据集
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.3
- 作者:
L. Barama;Zhigang Peng;A. Newman;Jesse Williams - 通讯作者:
Jesse Williams
利用三分量背景噪声互相关技术测量2008年汶川震中区的波速变化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
刘志坤;黄金莉;Zhigang Peng;苏金蓉 - 通讯作者:
苏金蓉
A shallow fault-zone structure illuminated by trapped waves in the Karadere–Duzce branch of the North Anatolian Fault, western Turkey
土耳其西部北安纳托利亚断层卡拉德雷-迪兹杰分支的浅断层带结构被困波照亮
- DOI:
10.1046/j.1365-246x.2003.01870.x - 发表时间:
2003 - 期刊:
- 影响因子:2.8
- 作者:
Y. Ben‐Zion;Zhigang Peng;D. Okaya;L. Seeber;J. Armbruster;Naşi̇de Özer;A. Michael;Ş. Barış;M. Aktar - 通讯作者:
M. Aktar
Lack of Additional Triggered Tectonic Tremor around the Simi Valley and the San Gabriel Mountain in Southern California
南加州西米谷和圣盖博山周围没有额外触发的构造震动
- DOI:
10.1785/0120130117 - 发表时间:
2013 - 期刊:
- 影响因子:3
- 作者:
Hongfeng Yang;Zhigang Peng - 通讯作者:
Zhigang Peng
Zhigang Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhigang Peng', 18)}}的其他基金
Collaborative Research: RAPID: Deployment of a Nodal Array to Capture Aftershocks of the 2023 Kahramanmaras Earthquake Sequences in Turkey
合作研究:RAPID:部署节点阵列捕获 2023 年土耳其卡赫拉曼马拉斯地震序列的余震
- 批准号:
2322460 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: High-resolution imaging of the Elgin-Lugoff earthquake swarm sequence and subsurface structures in South Carolina using a dense seismic nodal array
合作研究:使用密集地震节点阵列对南卡罗来纳州埃尔金-卢戈夫地震群序列和地下结构进行高分辨率成像
- 批准号:
2321094 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Capturing the Elgin-Lugoff earthquake swarm with a dense nodal array
合作研究:RAPID:用密集节点阵列捕捉埃尔金-卢戈夫地震群
- 批准号:
2303139 - 财政年份:2022
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: The Mechanics of Intermediate Depth Earthquakes: a Multiscale Investigation Combining Seismological Analyses, Laboratory Experiments, and Numerical Modeling
合作研究:中深度地震的力学:结合地震分析、实验室实验和数值模拟的多尺度研究
- 批准号:
1925965 - 财政年份:2019
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: Systematic Comparisons of Regular and Slow Earthquakes in Central and Southern California
合作研究:加州中部和南部定期地震和慢震的系统比较
- 批准号:
1736197 - 财政年份:2017
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Triggered Aftershocks and Tremors following the Kaikoura Earthquake recorded with Arrays (KEA)
RAPID:协作研究:用阵列记录的凯库拉地震后引发的余震和震颤 (KEA)
- 批准号:
1725165 - 财政年份:2017
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: Mining Seismic Wavefields
合作研究:挖掘地震波场
- 批准号:
1551022 - 财政年份:2016
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: Triggering of Antarctic Icequakes, Slip Events, and other Tectonic Phenomena by Distant Earthquakes
合作研究:远地地震引发南极冰震、滑动事件和其他构造现象
- 批准号:
1543399 - 财政年份:2016
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Spatio-temporal seismicity changes and high-resolution fault zone structures associated with recent large earthquakes in China
中国近期大地震的时空地震活动变化及高分辨率断裂带结构
- 批准号:
1447091 - 财政年份:2015
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: Near-Field Observations of Preseismic, Coseismic, and Postseismic Slip on the Northern Costa Rica Megathrust
合作研究:哥斯达黎加北部巨型逆冲断层的震前、同震和震后滑动的近场观测
- 批准号:
1321552 - 财政年份:2013
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Collaborative Research: Quantifying the Global Electric Circuit by Data Mining of Electric Field and Radar Observations from Ground Based, Airborne and Satellite Platforms
合作研究:通过地面、机载和卫星平台的电场和雷达观测数据挖掘来量化全球电路
- 批准号:
2328464 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317193 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201799 - 财政年份:2022
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201796 - 财政年份:2022
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant