Collaborative Research: Robust Inference and Computational Methods for Optimal Values of Nonlinear Programs

协作研究:非线性程序最优值的鲁棒推理和计算方法

基本信息

  • 批准号:
    1824375
  • 负责人:
  • 金额:
    $ 17.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Empirical research in the social sciences often entails estimating and drawing robust inference about optimal values of nonlinear programs. Examples include, but are not limited to, the analysis of causal effects of economic policies; features of the distribution of counterfactual outcomes (e.g. optimal reserve prices and optimal revenues) under weak assumptions; counterfactual vote shares and seats assignments; welfare effects of policy interventions; demand extrapolation and welfare analysis subject to rationality constraints; maximum and minimum responses to monetary policies. This research aims at establishing a general, formal framework and providing a methodology for estimation and robust inference on optimal values of nonlinear programs under weak restrictions on the underlying process that has generated the observable data. Recognizing that the computational feasibility of the method is crucial for its applicability and usefulness for empirical researchers and society more broadly, the investigators deliver algorithms for computation of the proposed estimators and robust confidence intervals. This research also delivers a collection of portable computer programs implementing the methodology that will be shared with the community openly and free of charges or restrictions.This research aims at developing robust inference procedures and computational methods for parameters in econometric models that are characterized as optimal values of nonlinear programs. Making inference on such functionals is nontrivial because subtle features of the underlying optimization problem may affect inference. For example, the optimal solution may not be unique, may be unique but only weakly identified, or may be characterized by intricate constraints. Due to these challenging features, existing methods often impose assumptions such as constraint qualifications on the underlying optimization problem. These are hard to verify in practice. This research aims at developing inference methods that place very little structure on the optimization problem. Further, the project aims at developing and investigating the convergence properties of a computational method that can be used to implement the procedure. Nonlinear programs often involve black-box functions that are computed by simulation or by solving a complex structural model. The algorithm developed in this project, which is based on the response surface method, mitigates the computational cost by constructing flexible approximations to such functions and adaptively drawing evaluation points to regions that are highly relevant for finding the optimal value.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会科学中的实证研究通常需要对非线性规划的最优值进行估计和得出稳健的推论。例子包括但不限于对经济政策的因果效应的分析;在弱假设下反事实结果(例如最优储备价格和最优收入)的分布特征;反事实的投票权份额和席位分配;政策干预的福利效应;受理性约束的需求外推和福利分析;对货币政策的最大和最小反应。这项研究旨在建立一个通用的形式化框架,并提供一种方法,用于估计和稳健推断在产生可观测数据的潜在过程的弱约束下的非线性规划的最优值。认识到该方法的计算可行性对于其对经验研究人员和更广泛的社会的适用性和有用性至关重要,研究人员提出了计算所建议的估计器和稳健可信区间的算法。这项研究还提供了一系列可移植的计算机程序,实现了将与社区公开和免费共享的方法。本研究旨在开发稳健的推理程序和计算方法,用于计量经济模型中的参数,这些参数被表征为非线性规划的最优值。对这样的泛函进行推理是不容易的,因为基本优化问题的微妙特征可能会影响推理。例如,最优解可能不是唯一的,可能是唯一的但只是弱识别的,或者可能具有复杂的约束特征。由于这些具有挑战性的特点,现有的方法经常在底层优化问题上强加约束条件等假设。这些都很难在实践中得到验证。这项研究的目的是开发推理方法,使优化问题只有很少的结构。此外,该项目的目的是开发和研究可用于实施该程序的计算方法的收敛特性。非线性程序通常涉及通过模拟或通过求解复杂结构模型来计算的黑盒函数。在这个项目中开发的算法基于响应面方法,通过对这些函数构建灵活的近似并自适应地将评估点绘制到与找到最优值高度相关的区域来降低计算成本。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local regression smoothers with set-valued outcome data
使用设定值结果数据进行局部回归平滑器
Confidence Intervals for Projections of Partially Identified Parameters
  • DOI:
    10.3982/ecta14075
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Kaido, Hiroaki;Molinari, Francesca;Stoye, Jorg
  • 通讯作者:
    Stoye, Jorg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesca Molinari其他文献

Heterogeneous Firms, Productivity, and Poverty Traps ECONOMIC
异质企业、生产力和贫困陷阱 经济
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Levon Barseghyan;D. Acemoglu;Costas Azariadis;Larry Blume;Helge Braun;Paco Buera;Jim Bullard;Stephen Durlauf;Oded Galor;Espen Henriksen;Nir Jaimovich;Per Krusell;Kiminori Matsuyama;Francesca Molinari;A. Razin;Richard Rogerson;Karl Shell;Gustavo Ventura;I. Werning;Riccardo DiCecio
  • 通讯作者:
    Riccardo DiCecio
MEASURING EXPECTATIONS 1
衡量期望 1
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Manski;Larry Blume;J. Dominitz;D. Easley;Yitzhak Gilboa;M. Keane;Francesca Molinari
  • 通讯作者:
    Francesca Molinari
Econometrics with Partial Identification
部分辨识的计量经济学
  • DOI:
    10.1920/wp.cem.2019.2519
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Francesca Molinari
  • 通讯作者:
    Francesca Molinari
Statistical Analysis of Choice Experiments and Surveys
  • DOI:
    10.1007/s11002-005-5884-2
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Daniel L. McFadden;Albert C. Bemmaor;Francis G. Caro;Jeff Dominitz;Byung-Hill Jun;Arthur Lewbel;Rosa L. Matzkin;Francesca Molinari;Norbert Schwarz;Robert J. Willis;Joachim K. Winter
  • 通讯作者:
    Joachim K. Winter
Distinguishing Probability Weighting from Risk Misperceptions in Field Data
区分概率加权和现场数据中的风险误解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Levon Barseghyan;Francesca Molinari;Ted O’Donoghue;Joshua C. Teitelbaum
  • 通讯作者:
    Joshua C. Teitelbaum

Francesca Molinari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesca Molinari', 18)}}的其他基金

Discrete and Rank Ordered Choice Models with Heterogeneous Preferences and Consideration
具有异质偏好和考虑的离散和排序选择模型
  • 批准号:
    2149374
  • 财政年份:
    2022
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Identification in Incomplete Econometric Models Using Random Set Theory
合作研究:使用随机集理论识别不完全计量经济模型
  • 批准号:
    0922330
  • 财政年份:
    2009
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Properties for Partially Identified Models
合作研究:部分辨识模型的渐近性质
  • 批准号:
    0617482
  • 财政年份:
    2006
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2240448
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230321
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309727
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
  • 批准号:
    2315613
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
  • 批准号:
    2315612
  • 财政年份:
    2023
  • 资助金额:
    $ 17.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了