Collaborative Research: Identification in Incomplete Econometric Models Using Random Set Theory

合作研究:使用随机集理论识别不完全计量经济模型

基本信息

  • 批准号:
    0922330
  • 负责人:
  • 金额:
    $ 22.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project would contribute to the literature on identification and inference in incomplete econometric models. An econometric model may be incomplete when, for example, sample realizations are not fully observable, or when the model asserts that the relationship between the outcome variable of interest and the exogenous variables is a correspondence rather than a function. In these cases, the sampling process and the maintained assumptions are consistent with a set of values for the parameter vectors (or statistical functionals) characterizing the model. This set of values is the sharp identification region of the models parameters. When the sharp identification region is not a singleton, the model is partially identified. The investigators use the tools of random sets theory to study identification in incomplete econometric models. These tools are especially suited for partial identification analysis, because they provide conditional and unconditional .probability distributions and expectations for random sets, that allow researchers to characterize the identified features of a model in the space of sets, in a manner which is the exact analog of how this task is commonly performed for point identified models in the space of vectors. The methodology that the investigators aim to develop focuses on a specific class of incomplete models, for which it provides a computationally tractable characterization of the sharp identification region. An incomplete model belongs to the class treated in the proposed research, if it predicts a convex set of conditional probability distributions of outcomes given covariates, rather than a single conditional probability distribution. Examples of models in this class include: static, simultaneous move finite games of complete information in the presence of multiple mixed strategy Nash equilibria; and polychotomous choice models with interval regressor data. These examples are explicitly analyzed in the proposal. A computationally tractable characterization of the sharp identification region of the parameters of models in this class was considered unattainable in the related literature.Partially identified models are ubiquitous in the recent theoretical and empirical literature in economics. Although it sometimes is easy to characterize their identification region explicitly, there exist many important problems in which a tractable characterization is difficult to obtain. It may be particularly difficult to establish sharpness, that is, to show that a conjectured region contains exactly the feasible parameter values and no others. Basing inference on a conjectured region which is not sharp may significantly weaken the ability of the researcher to make useful predictions, and to test for model misspecification. The intellectual merit of this proposal is twofold: (1) To provide a methodological framework to obtain a computationally tractable characterization of the sharp identification region of a model; (2) To provide practitioners with ready to use software to apply this methodology and conduct estimation and inference when point identification is not available.Broader impacts: The proposed methodology for characterization and computation of the sharp identification region enables practitioners to evaluate the credibility of existing policy studies, and compare the results of different approaches to policy research, by addressing both the identification aspects, as well as the statistical inference aspects of the problem. This research program aims to integrate teaching and research through research experience for undergraduates, the use of graduate assistants, and the instruction of a graduate course on inference in partially identified models using random sets theory.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目将有助于在不完整的计量经济模型的识别和推理的文献。例如,当样本实现不完全可观察时,或者当模型断言感兴趣的结果变量与外生变量之间的关系是对应关系而不是函数时,计量经济学模型可能是不完整的。 在这些情况下,采样过程和保持的假设与表征模型的参数向量(或统计泛函)的一组值一致。这组值是模型参数的尖锐识别区域。当尖锐的识别区域不是单点时,模型被部分识别。研究人员使用随机集理论的工具来研究不完全计量经济模型中的识别问题。这些工具特别适合于部分识别分析,因为它们提供了随机集的条件和无条件概率分布和期望,允许研究人员以一种精确模拟的方式来描述集合空间中模型的识别特征,这种方式与矢量空间中的点识别模型通常执行的任务完全相同。 研究人员旨在开发的方法专注于一类特定的不完整模型,它提供了一个计算上易于处理的尖锐识别区域的特征。一个不完整的模型属于所提出的研究中处理的类,如果它预测的结果给定协变量的条件概率分布的凸集,而不是一个单一的条件概率分布。这类模型的例子包括:静态的,同时移动有限的完全信息博弈中存在多个混合策略纳什均衡;和多元选择模型与区间回归数据。提案中明确分析了这些例子。部分可辨识模型在最近的经济学理论和经验文献中普遍存在,但在相关文献中,这类模型的参数的精确可辨识区域的计算刻画是难以实现的。虽然有时很容易明确地描述其识别区域,但存在许多重要问题,其中难以获得易于处理的特征。建立清晰度可能特别困难,也就是说,要显示一个精确的区域包含可行的参数值,而不包含其他参数值。基于一个不尖锐的约束区域的推断可能会大大削弱研究人员做出有用预测的能力,并测试模型的错误设定。这一建议的智力价值是双重的:(1)提供一个方法框架,以获得模型的尖锐识别区域的计算上易于处理的特征;(2)为从业人员提供现成的软件,以应用这一方法,并在点识别不可用时进行估计和推断。所提出的尖锐识别区域的表征和计算方法使从业人员能够评估现有政策研究的可信度,并比较不同政策研究方法的结果,通过解决识别方面,以及问题的统计推断方面。该研究计划旨在通过本科生的研究经验,研究生助理的使用,以及使用随机集理论在部分识别模型中进行推理的研究生课程的教学,将教学和研究结合起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesca Molinari其他文献

Heterogeneous Firms, Productivity, and Poverty Traps ECONOMIC
异质企业、生产力和贫困陷阱 经济
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Levon Barseghyan;D. Acemoglu;Costas Azariadis;Larry Blume;Helge Braun;Paco Buera;Jim Bullard;Stephen Durlauf;Oded Galor;Espen Henriksen;Nir Jaimovich;Per Krusell;Kiminori Matsuyama;Francesca Molinari;A. Razin;Richard Rogerson;Karl Shell;Gustavo Ventura;I. Werning;Riccardo DiCecio
  • 通讯作者:
    Riccardo DiCecio
MEASURING EXPECTATIONS 1
衡量期望 1
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Manski;Larry Blume;J. Dominitz;D. Easley;Yitzhak Gilboa;M. Keane;Francesca Molinari
  • 通讯作者:
    Francesca Molinari
Econometrics with Partial Identification
部分辨识的计量经济学
  • DOI:
    10.1920/wp.cem.2019.2519
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Francesca Molinari
  • 通讯作者:
    Francesca Molinari
Statistical Analysis of Choice Experiments and Surveys
  • DOI:
    10.1007/s11002-005-5884-2
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Daniel L. McFadden;Albert C. Bemmaor;Francis G. Caro;Jeff Dominitz;Byung-Hill Jun;Arthur Lewbel;Rosa L. Matzkin;Francesca Molinari;Norbert Schwarz;Robert J. Willis;Joachim K. Winter
  • 通讯作者:
    Joachim K. Winter
Distinguishing Probability Weighting from Risk Misperceptions in Field Data
区分概率加权和现场数据中的风险误解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Levon Barseghyan;Francesca Molinari;Ted O’Donoghue;Joshua C. Teitelbaum
  • 通讯作者:
    Joshua C. Teitelbaum

Francesca Molinari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesca Molinari', 18)}}的其他基金

Discrete and Rank Ordered Choice Models with Heterogeneous Preferences and Consideration
具有异质偏好和考虑的离散和排序选择模型
  • 批准号:
    2149374
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust Inference and Computational Methods for Optimal Values of Nonlinear Programs
协作研究:非线性程序最优值的鲁棒推理和计算方法
  • 批准号:
    1824375
  • 财政年份:
    2018
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Properties for Partially Identified Models
合作研究:部分辨识模型的渐近性质
  • 批准号:
    0617482
  • 财政年份:
    2006
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203144
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Detecting Gait Phases with Raised Metabolic Cost using Robotic Perturbations and System Identification for Enabling Targeted Rehabilitation Therapy
合作研究:使用机器人扰动和系统识别来检测代谢成本升高的步态阶段,以实现有针对性的康复治疗
  • 批准号:
    2203143
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: How do biopolymers dissolve? Identification of rate-limiting steps as a framework to design polymers with tailored dissolution.
合作研究:生物聚合物如何溶解?
  • 批准号:
    2204995
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211598
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions
合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模
  • 批准号:
    2146026
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Identification and Structural Modeling of Intrinsically Disordered Protein-Protein and Protein-Nucleic Acids Interactions
合作研究:本质无序的蛋白质-蛋白质和蛋白质-核酸相互作用的识别和结构建模
  • 批准号:
    2146027
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Systematic De Novo Identification of Macromolecular Complexes in Cryo-Electron Tomography Images
合作研究:III:介质:冷冻电子断层扫描图像中大分子复合物的系统从头识别
  • 批准号:
    2211597
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
  • 批准号:
    2133110
  • 财政年份:
    2022
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了