An Optimization Approach for Nonlinear Optimal Feedback Control Design and Uncertainty Propagation
非线性最优反馈控制设计和不确定性传播的优化方法
基本信息
- 批准号:1826990
- 负责人:
- 金额:$ 31.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The multi-resolution articulation abilities of the next-generation autonomous systems, used in advanced robotics, rehabilitation, tele-operation, manufacturing and infrastructure applications are made possible by unique designs and complex mechanisms. These next generation robotic systems can benefit greatly by the development of computationally efficient tools to synthesize optimal feedback control laws to achieve specified output signal statistics in presence of model and sensing uncertainties. To support commercial applications such as package delivery, it is imperative that the robotic systems operating in uncertain environments negotiate specific waypoints with prescribed tolerance. This unique challenge of routing the vehicles operating in uncertain environments involves a strong coupling between the uncertainty propagation and control. Successful negotiation of this challenge is contingent on the development of stable optimal feedback control laws, while accounting for the uncertainties that pervade dynamical systems. The fundamental formalisms that underpin this research are widely applicable to the control of next generation robotic systems and unmanned vehicles. The project includes plans to integrate research into educational efforts involving graduate and undergraduate students, including expanding efforts to reach under-represented populations in science and engineering. Outreach activities include the technical interchange meetings with local school teachers and instituting robotics related tutorial courses to motivate middle and high school students.The focus of the research is to investigate a unified approach to stable optimal feedback control laws and uncertainty propagation methods by developing computationally efficient solutions to the Hamilton Jacobi Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) partial differential equations (PDEs), respectively. Recent advances in sparse approximation and non-product quadrature rules are exploited to solve the HJB and FPK equations. The intellectual merits are drawn from advancing the state of knowledge in uncertainty quantification, optimal control theory, and numerical analysis, and integrating them effectively to realize a scalable framework for study of dynamical systems. The Conjugate Unscented Transformation (CUT) technique in conjunction with sparse approximation methods forms an enabling tool to drive the uncertainty propagation and optimal feedback control realization processes. This research culminates in the development of nonlinear stable feedback control laws for uncertain dynamic systems, impacting various estimation and control problems in engineering. The proposed research will be demonstrated on several benchmark problems, along with two key applications involving optimal momentum transfer in control of gyroscopic systems and surveillance of a ground region with the help of unmanned vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过独特的设计和复杂的机制,下一代自主系统的多分辨率连接能力,用于先进的机器人,康复,远程操作,制造和基础设施应用。这些下一代机器人系统可以大大受益于计算效率的工具的发展,以合成最优反馈控制律,以实现指定的输出信号统计模型和传感不确定性的存在。为了支持商业应用,如包裹递送,在不确定环境中操作的机器人系统必须以规定的公差协商特定的航路点。这种独特的挑战,路由的车辆在不确定的环境中运行,涉及到不确定性传播和控制之间的强耦合。成功的谈判,这一挑战是取决于稳定的最优反馈控制律的发展,同时占弥漫动力系统的不确定性。支撑这项研究的基本形式主义广泛适用于下一代机器人系统和无人驾驶车辆的控制。该项目包括将研究纳入涉及研究生和本科生的教育工作的计划,包括扩大努力,以接触科学和工程领域代表性不足的人口。外展活动包括与当地学校教师的技术交流会议和建立机器人相关的辅导课程,以激励初中和高中学生。研究的重点是通过开发计算有效的解决方案,汉密尔顿雅可比贝尔曼(HJB)和福克-普朗克-科尔莫戈罗夫(FPK)偏微分方程,研究稳定的最佳反馈控制律和不确定性传播方法的统一方法(PDE)。稀疏逼近和非积求积规则的最新进展被用来解决HJB和FPK方程。知识的优点是从推进不确定性量化,最优控制理论和数值分析的知识状态,并有效地整合它们,以实现一个可扩展的框架,研究动态系统。共轭无迹变换(CUT)技术结合稀疏近似方法形成了一个使能工具,以驱动不确定性传播和最优反馈控制实现过程。这项研究的高潮是不确定动态系统的非线性稳定反馈控制律的发展,影响工程中的各种估计和控制问题。拟议的研究将在几个基准问题上得到证明,沿着两个关键应用,涉及陀螺系统控制中的最佳动量传递和无人驾驶车辆帮助下的地面区域监视。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Sparse Collocation Approach for Optimal Feedback Control for Spacecraft Attitude Maneuvers
航天器姿态机动最优反馈控制的稀疏搭配方法
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Mehrdad Mirzaei, Puneet Singla
- 通讯作者:Mehrdad Mirzaei, Puneet Singla
CANONICAL TRANSFORMATIONS VIA A SPARSE APPROXIMATION-BASED COLLOCATION METHOD FOR DYNAMICAL SYSTEMS
通过基于稀疏近似的动态系统搭配方法进行规范变换
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Jain, A.;Gueho, D.;Singla, P.;Akella, M.
- 通讯作者:Akella, M.
Conjugate Unscented Transformation: Applications to Estimation and Control
- DOI:10.1115/1.4037783
- 发表时间:2018-03-01
- 期刊:
- 影响因子:1.7
- 作者:Adurthi, Nagavenkat;Singla, Puneet;Singh, Tarunraj
- 通讯作者:Singh, Tarunraj
A Conjugate Unscented Transform-Based Scheme for Optimal Control with Terminal State Constraints
基于共轭无味变换的终端状态约束最优控制方案
- DOI:10.23919/acc.2018.8431117
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Mercurio, Michael;Singla, Puneet;Majji, Manoranjan
- 通讯作者:Majji, Manoranjan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Puneet Singla其他文献
Sparse Approximate Hamilton-Jacobi Solutions for Optimal Feedback Control with Terminal Constraints
带终端约束的最优反馈控制的稀疏近似 Hamilton-Jacobi 解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amit Jain;Roshan Eapen;Puneet Singla - 通讯作者:
Puneet Singla
Advanced Lucas Kanada optical flow for deformable image registration
- DOI:
10.1016/j.jcrc.2012.01.039 - 发表时间:
2012-06-01 - 期刊:
- 影响因子:
- 作者:
Christoph Hoog Antink;Tarunraj Singh;Puneet Singla;Matthew Podgorsak - 通讯作者:
Matthew Podgorsak
Puneet Singla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Puneet Singla', 18)}}的其他基金
An Optimization Approach for Nonlinear Optimal Feedback Control Design and Uncertainty Propagation
非线性最优反馈控制设计和不确定性传播的优化方法
- 批准号:
1634590 - 财政年份:2016
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
CAREER: Uncertainty Propagation and Data Assimilation for Toxic Cloud Prediction
职业:有毒云预测的不确定性传播和数据同化
- 批准号:
1054759 - 财政年份:2011
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
Image Guided Tracking of Tumor Motion for Conformal Radiation Therapy
用于适形放射治疗的肿瘤运动的图像引导跟踪
- 批准号:
0928630 - 财政年份:2009
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
DynSyst_Special_Topics: Convex Optimization Based Approach for High Fidelity Uncertainty Propagation Through Nonlinear Dynamic Systems
DynSyst_Special_Topics:基于凸优化的非线性动态系统高保真度不确定性传播方法
- 批准号:
0908403 - 财政年份:2009
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant
Development of nonlinear Raman approach for understanding the background of vibrational polaritons
开发非线性拉曼方法来理解振动极化子的背景
- 批准号:
23K17904 - 财政年份:2023
- 资助金额:
$ 31.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
- 批准号:
532522-2019 - 财政年份:2022
- 资助金额:
$ 31.78万 - 项目类别:
Postgraduate Scholarships - Doctoral
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 31.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Event-Triggered Approach to Control of Nonlinear Systems
非线性系统控制的事件触发方法
- 批准号:
RGPIN-2018-03722 - 财政年份:2022
- 资助金额:
$ 31.78万 - 项目类别:
Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2022
- 资助金额:
$ 31.78万 - 项目类别:
Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2022
- 资助金额:
$ 31.78万 - 项目类别:
Discovery Grants Program - Individual
Study on the nonlinear geometric heat flow via a geometric analysis approach
通过几何分析方法研究非线性几何热流
- 批准号:
21K13824 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: ADAPT: Understanding Nonlinear Noise in LIGO: A Machine Learning Approach
EAGER:ADAPT:理解 LIGO 中的非线性噪声:一种机器学习方法
- 批准号:
2141072 - 财政年份:2021
- 资助金额:
$ 31.78万 - 项目类别:
Standard Grant